Awesome
Learning to Discover Reflection Symmetry via Polar Matching Convolution
<p align="center"> Ahyun Seo*, Woohyeon Shim*, Minsu Cho </p> <p align="center"> <a href="https://arxiv.org/abs/2108.12952">[paper]</a> <a href="http://cvlab.postech.ac.kr/research/PMCNet">[project page]</a> </p> <!-- [[paper]](https://arxiv.org/abs/2108.12952) [[project page]](http://cvlab.postech.ac.kr/research/PMCNet/) -->Official PyTorch implementation of Learning to Discover Reflection Symmetry via Polar Matching Convolution (ICCV 2021).
Contributors of this repo: Woohyeon Shim, Ahyun Seo
Environment
conda create --name pmcnet python=3.7
conda activate pmcnet
conda install pytorch==1.7.0 torchvision==0.8.1 cudatoolkit=11.0 -c pytorch
conda install -c conda-forge matplotlib
pip install albumentations tqdm parmap scikit-image pycocotools opencv-python
mkdir weights
# setup coco_path and sym_datasets
cd bsds
python setup.py build_ext --inplace
Datasets
- symmetry detection datasets (LDRS, SDRW, NYU) (passwd: ldrs2021) sym_datasets
- COCO dataset (2014) train2014 val2014 annotations
.
├── coco_path
│ ├── train2014
│ ├── val2014
│ └── annotations
├── sym_datasets
│ ├── NYU
│ ├── SDRW
│ └── LDRS
├── (...)
└── main.py
Training
The trained weights and arguments will be save to the checkpoint path corresponding to the VERSION_NAME.
CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --ver VERSION_NAME
Test
- trained weights of PMCNet (passwd: ldrs2021) weights
CUDA_VISIBLE_DEVICES=0 python main.py --ver ours -t
References
- Python port of BSDS 500 link
- spb-mil link
- NYU database link
- SDRW dataset (CVPR 2013 challenge) link
- COCO preprocessing link
Citation
If you find our code or paper useful to your research work, please consider citing:
@inproceedings{seoshim2021pmcnet,
author = {Seo, Ahyun and Shim, Woohyeon and Cho, Minsu},
title = {Learning to Discover Reflection Symmetry via Polar Matching Convolution},
booktitle= {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
year = {2021}
}