Awesome
CvT2DistilGPT2
BibTeX citation:
@article{nicolson_improving_2023,
title = {Improving chest {X}-ray report generation by leveraging warm starting},
volume = {144},
issn = {0933-3657},
url = {https://www.sciencedirect.com/science/article/pii/S0933365723001471},
doi = {https://doi.org/10.1016/j.artmed.2023.102633},
journal = {Artificial Intelligence in Medicine},
author = {Nicolson, Aaron and Dowling, Jason and Koopman, Bevan},
year = {2023},
keywords = {Chest X-ray report generation, Image captioning, Multi-modal learning, Warm starting},
pages = {102633},
}
Improving Chest X-Ray Report Generation by Leveraging Warm-Starting:
- This repository houses the code for CvT2DistilGPT2 from https://doi.org/10.1016/j.artmed.2023.102633.
- Implemented in PyTorch Lightning.
- CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.
- Its encoder is the Convolutional vision Transformer (CvT) warm-started with an ImageNet-21K checkpoint.
- Its decoder is DistilGPT2 (which describes the architecture of the decoder as well as the checkpoint).
- Checkpoints for CvT2DistilGPT2 on MIMIC-CXR and IU X-Ray are available.
<p align="center"> <a>CvT2DistilGPT2 for MIMIC-CXR. Q, K, and V are the queries, keys, and values, respectively, for multi-head attention. * indicates that the linear layers for Q, K, and V are replaced with the convolutional layers depicted below the multi-head attention module. [BOS] is the beginning-of-sentence special token. N_l is the number of layers for each stage, where N_l=1 , N_l=4 , and N_l=16 for the first, second, and third stage, respectively. The head for DistilGPT2 is the same used for language modelling. Subwords produced by DistilGPT2 are separated by a vertical bar.</a> </p> |
Installation:
After cloning the repository, install the required packages in a virtual environment.
The required packages are located in requirements.txt
:
python -m venv --system-site-packages venv
source venv/bin/activate
python -m pip install --upgrade pip
python -m pip install --upgrade -r requirements.txt --no-cache-dir
Model checkpoints:
CvT2DistilGPT2 checkpoints for MIMIC-CXR and IU X-Ray can be found at: https://doi.org/10.25919/ng3g-aj81 (click on the files tab to download individual checkpoints).
Place the checkpoints in the checkpoint directory for each model of each task, e.g., place the checkpoint:
at the path: checkpoints/mimic_cxr_jpg_chen/cvt_21_to_gpt2/epoch=8-val_chen_cider=0.425092.ckpt
.
Note: the experiment
directory can be changed for each task with the variable exp_dir
in task/mimic_cxr_jpg_chen/paths.yaml
and task/iu_x_ray_chen/paths.yaml
CheXbert for the CE metrics:
Download the CheXbert checkpoint from https://github.com/stanfordmlgroup/CheXbert for the CE metrics.
Place the checkpoint at checkpoints/stanford/chexbert/chexbert.pth
.
Datasets:
For MIMIC-CXR:
-
Download MIMIC-CXR-JPG from:
https://physionet.org/content/mimic-cxr-jpg/2.0.0/
-
Place the files in
dataset/mimic_cxr_jpg
so that the following path existsdataset/mimic_cxr_jpg/physionet.org/files/mimic-cxr-jpg/2.0.0/files
. -
Download the Chen et al. labels for MIMIC-CXR from:
https://github.com/cuhksz-nlp/R2Gen
Or
https://github.com/cuhksz-nlp/R2GenCMN
Or
https://www.dropbox.com/s/ojcc0kvgzzpblf8/dataset.zip?dl=0
-
Place
annotations.json
indataset/mimic_cxr_chen
such that its path isdataset/mimic_cxr_chen/annotations.json
For IU X-Ray:
-
Download the Chen et al. labels and the chest X-rays in
png
format for IU X-Ray from:https://github.com/cuhksz-nlp/R2Gen
Or
https://github.com/cuhksz-nlp/R2GenCMN
Or
https://www.dropbox.com/s/ojcc0kvgzzpblf8/dataset.zip?dl=0
-
Place the files into
dataset/iu_x-ray_chen
such that their paths aredataset/iu_x-ray_chen/annotations.json
anddataset/iu_x-ray_chen/images
.
Note: the dataset
directory can be changed for each task with the variable dataset_dir
in task/mimic_cxr_jpg_chen/paths.yaml
and task/mimic_cxr_jpg_chen/paths.yaml
Run testing:
The model configurations for each task can be found in its config
directory, e.g. config/test_mimic_cxr_chen_cvt2distilgpt2.yaml
. To run testing:
dlhpcstarter -t mimic_cxr_chen -c config/test_mimic_cxr_chen_cvt2distilgpt2.yaml --stages_module stages --test
or for IU X-Ray:
dlhpcstarter -t iu_x_ray_chen -c config/test_iu_x_ray_chen_cvt2distilgpt2.yaml --stages_module stages --test
See dlhpcstarter==0.1.2
for more options.
Note: data will be saved in the experiment directory (exp_dir
in the configuration file).
Results:
The results should be similar to the following presented results:
-
MIMIC-CXR with the labels of Chen
at el.
and checkpoint:mimic_cxr_jpg_chen/cvt_21_to_distilgpt2/epoch=8-val_chen_cider=0.425092.ckpt
:┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃ Test metric ┃ DataLoader 0 ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩ │ test_ce_f1_example │ 0.366626501083374 │ │ test_ce_f1_macro │ 0.2595527172088623 │ │ test_ce_f1_micro │ 0.4410667403620285 │ │ test_ce_num_examples │ 3858.0 │ │ test_ce_precision_example │ 0.41827061772346497 │ │ test_ce_precision_macro │ 0.36531099677085876 │ │ test_ce_precision_micro │ 0.4927446742821859 │ │ test_ce_recall_example │ 0.36703819036483765 │ │ test_ce_recall_macro │ 0.25426599383354187 │ │ test_ce_recall_micro │ 0.39919959979989994 │ │ test_chen_bleu_1 │ 0.39294159412384033 │ │ test_chen_bleu_2 │ 0.24798792600631714 │ │ test_chen_bleu_3 │ 0.17156976461410522 │ │ test_chen_bleu_4 │ 0.12690401077270508 │ │ test_chen_cider │ 0.3898723410220536 │ │ test_chen_meteor │ 0.15444843471050262 │ │ test_chen_num_examples │ 3858.0 │ │ test_chen_rouge │ 0.28650081595125004 │ └───────────────────────────┴───────────────────────────┘
-
The generated reports are given in:
experiment/test_mimic_cxr_chen_cvt2distilgpt2/trial_0/generated_reports/test_reports_epoch-0_16-05-2023_10-20-48.csv
-
IU X-Ray with the labels of Chen
at el.
and checkpoint:iu_x_ray_chen/cvt_21_to_distilgpt2/epoch=10-val_chen_cider=0.475024.ckpt
:┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃ Test metric ┃ DataLoader 0 ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩ │ test_ce_f1_example │ 0.5079095959663391 │ │ test_ce_f1_macro │ 0.04815409332513809 │ │ test_ce_f1_micro │ 0.5434782608695652 │ │ test_ce_num_examples │ 590.0 │ │ test_ce_precision_example │ 0.508474588394165 │ │ test_ce_precision_macro │ 0.036319613456726074 │ │ test_ce_precision_micro │ 0.5084745762711864 │ │ test_ce_recall_example │ 0.5076271295547485 │ │ test_ce_recall_macro │ 0.0714285746216774 │ │ test_ce_recall_micro │ 0.5836575875486382 │ │ test_chen_bleu_1 │ 0.4734129309654236 │ │ test_chen_bleu_2 │ 0.30362269282341003 │ │ test_chen_bleu_3 │ 0.22399061918258667 │ │ test_chen_bleu_4 │ 0.17524345219135284 │ │ test_chen_cider │ 0.6941080384291234 │ │ test_chen_meteor │ 0.19990624487400055 │ │ test_chen_num_examples │ 590.0 │ │ test_chen_rouge │ 0.3761140813853112 │ └───────────────────────────┴───────────────────────────┘
-
The generated reports are given in:
experiment/test_iu_x_ray_chen_cvt2distilgpt2/trial_0/generated_reports/test_reports_epoch-0_16-05-2023_12-46-42.csv
-
Note that there are differences to the pre-print available online. There are errors in the preprint.
Encoder and decoder checkpoints for warm-starting training:
CvT-21 Checkpoint:
Download CvT-21-384x384-IN-22k.pth
from this Microsoft model zoo and place it in checkpoints
such that its path is checkpoints/CvT-21-384x384-IN-22k.pth
DistilGPT2 Checkpoint:
Download config.json
, tokenizer.json
, pytorch_model.bin
, and vocab.json
from https://huggingface.co/distilgpt2/tree/main and place them in checkpoints/distilgpt2
, e.g., checkpoints/distilgpt2/config.json
.
To download everything, you can use git clone https://huggingface.co/distilgpt2
(note that git lfs install
is needed).
Run training:
To train with MIMIC-CXR with the labels of Chen at el.
:
dlhpcstarter -t mimic_cxr -c config/train_mimic_cxr_chen_cvt2distilgpt2.yaml --stages_module stages --train --test
To train with IU X-Ray with the labels of Chen at el.
:
dlhpcstarter -t mimic_cxr -c config/train_mimic_cxr_chen_cvt2distilgpt2.yaml --stages_module stages --train --test
See dlhpcstarter==0.1.2
for more options.
Help
If you need help, please leave an issue and we will get back to you as soon as possible.