Home

Awesome

AudioFile

<!-- Version and License Badges -->

Version License Language

A simple header-only C++ library for reading and writing audio files.

Current supported formats:

Author

AudioFile is written and maintained by Adam Stark.

http://www.adamstark.co.uk

Usage

Create an AudioFile object:

#include "AudioFile.h"

AudioFile<double> audioFile;

Load an audio file:

audioFile.load ("/path/to/my/audiofile.wav");

Get some information about the loaded audio:

int sampleRate = audioFile.getSampleRate();
int bitDepth = audioFile.getBitDepth();

int numSamples = audioFile.getNumSamplesPerChannel();
double lengthInSeconds = audioFile.getLengthInSeconds();

int numChannels = audioFile.getNumChannels();
bool isMono = audioFile.isMono();
bool isStereo = audioFile.isStereo();

// or, just use this quick shortcut to print a summary to the console
audioFile.printSummary();

Access the samples directly:

int channel = 0;
int numSamples = audioFile.getNumSamplesPerChannel();

for (int i = 0; i < numSamples; i++)
{
	double currentSample = audioFile.samples[channel][i];
}

Replace the AudioFile audio buffer with another

// 1. Create an AudioBuffer
// (BTW, AudioBuffer is just a vector of vectors)

AudioFile<double>::AudioBuffer buffer;

// 2. Set to (e.g.) two channels
buffer.resize (2);

// 3. Set number of samples per channel
buffer[0].resize (100000);
buffer[1].resize (100000);

// 4. do something here to fill the buffer with samples, e.g.

#include <math.h> // somewhere earler (for M_PI and sinf())

// then...

int numChannels = 2;
int numSamplesPerChannel = 100000;
float sampleRate = 44100.f;
float frequency = 440.f;

for (int i = 0; i < numSamplesPerChannel; i++)
{
    float sample = sinf (2. * M_PI * ((float) i / sampleRate) * frequency) ;

    for (int channel = 0; channel < numChannels; channel++)
         buffer[channel][i] = sample * 0.5;
}

// 5. Put into the AudioFile object
bool ok = audioFile.setAudioBuffer (buffer);

Resize the audio buffer

// Set both the number of channels and number of samples per channel
audioFile.setAudioBufferSize (numChannels, numSamples);

// Set the number of samples per channel
audioFile.setNumSamplesPerChannel (numSamples);

// Set the number of channels
audioFile.setNumChannels (numChannels);

Set bit depth and sample rate

audioFile.setBitDepth (24);
audioFile.setSampleRate (44100);

Save the audio file to disk

// Wave file (implicit)
audioFile.save ("path/to/desired/audioFile.wav");

// Wave file (explicit)
audioFile.save ("path/to/desired/audioFile.wav", AudioFileFormat::Wave);

// Aiff file
audioFile.save ("path/to/desired/audioFile.aif", AudioFileFormat::Aiff);

Examples

Please see the examples folder for some examples on library usage.

A Note On Types

AudioFile is a template class and so it can be instantiated using different types to represent the audio samples.

For example, we can use floating point precision...

AudioFile<float> audioFile;

...or double precision...

AudioFile<double> audioFile;

...or an integer type:

AudioFile<int> audioFile;

This simply reflects the data type you would like to use to store the underlying audio samples.

When you use an integer type to store the samples (e.g. int or int8_t or int16_t or uint32_t), the library will read in the integer sample values directly from the audio file.

A couple of notes on integer types:

The following table details the sample range for each bit-depth:

Type8-bit Audio16-bit Audio24-bit Audio32-bit Audio
float[-1.0, 1.0][-1.0, 1.0][-1.0, 1.0][-1.0, 1.0]
double[-1.0, 1.0][-1.0, 1.0][-1.0, 1.0][-1.0, 1.0]
int8_t[-127, 127]:x: (type too small):x: (type too small):x: (type too small)
uint8_t[1, 255]:x: (type too small):x: (type too small):x: (type too small)
int16_t[-127, 127][-32767, 32767]:x: (type too small):x: (type too small)
uint16_t[1, 255][1, 65535]:x: (type too small):x: (type too small)
int32_t[-127, 127][-32767, 32767][-8388607, 8388607][-2147483647, 2147483647]
uint32_t[1, 255][1, 65535][1, 16777215][1, 4294967295]
int64_t[-127, 127][-32767, 32767][-8388607, 8388607][-2147483647, 2147483647]
uint64_t[1, 255][1, 65535][1, 16777215][1, 4294967295]

Error Messages

By default, the library logs error messages to the console to provide information on what has gone wrong (e.g. a file we tried to load didn't exist).

If you prefer not to see these messages, you can disable this error logging behaviour using:

audioFile.shouldLogErrorsToConsole (false);

Versions

1.1.2 - 18th November 2024
1.1.1 - 4th April 2023
1.1.0 - 15th January 2022
1.0.9 - 23rd January 2021
1.0.8 - 18th October 2020
1.0.7 - 3rd July 2020
1.0.6 - 29th February 2020
1.0.5 - 14th October 2019
1.0.4 - 13th October 2019
1.0.3 - 28th October 2018
1.0.2 - 6th June 2017

Contributions

Many thanks to the following people for their contributions to this library:

Want to Contribute?

If you would like to submit a pull request for this library, please do! But kindly follow the following simple guidelines...

License

MIT License

Copyright (c) 2017 Adam Stark

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.