Home

Awesome

Unlimiformer: Long-Range Transformers with Unlimited Length Input (NeurIPS 2023)

unlimiformer_diagram3_with_overlaps

This is the official implementation of the paper:

Amanda Bertsch, Uri Alon, Graham Neubig, and Matthew R. Gormley:
Unlimiformer: Long-Range Transformers with Unlimited Length Input (to appear in NeurIPS 2023)

Unlimiformer is a method for augmenting pretrained encoder-decoder models with retrieval-based attention, without changing the mathematical definition of attention. This allows the use of unlimited length inputs with any pretrained encoder-decoder!
See also our Tweet.

Unlimiformer can be used to improve the performance of an already-trained model. For best results, the model can be trained with Unlimiformer training.

If you have any questions on this work, please open a GitHub issue or email the authors at abertsch@cs.cmu.edu, ualon@cs.cmu.edu

October 2023 - Unlimiformer will appear at NeurIPS 2023!

August 2023 - Unlimiformer now supports Llama-2 (and all its derivatives)!

To prompt Llama-2 with extremely long inputs, for example, the content of an entire book, use:

python src/run_generation.py --model_type llama --model_name_or_path meta-llama/Llama-2-13b-chat-hf \
    --prefix "<s>[INST] <<SYS>>\n You are a helpful assistant. Answer with detailed responses according to the entire instruction or question. \n<</SYS>>\n\n Summarize the following book: " \
    --prompt example_inputs/harry_potter_full.txt \
    --suffix " [/INST]" --test_unlimiformer --fp16 --length 200 --layer_begin 16 \
    --index_devices 1 --datastore_device 1 

Getting Started

General Instructions

Copy the files from src into your source code folder.

You'll need to set values for the Unlimiformer-specific arguments outlined in usage.py - you can add these arguments wherever you usually process hyperparameters. To use the model, you must set test_unlimiformer=True. For datastore usage, the model must be in evaluation model (e.g. call model.eval() before inference).

inference-example.py outlines a minimal example for running a sequence through an Unlimiformer model, using the default arguments.

run.py is an example of a full training setup that integrates Unlimiformer, adopted from SLED. See full command lines below.

Reproducing the Experiments from the Paper - Command Lines

To run a standard finetuning + evaluation of BART-base on the GovReport dataset (as examples), use:

python src/run.py \
    src/configs/training/base_training_args.json \
    src/configs/data/gov_report.json \
    --output_dir output_train_bart_base_local/ \
    --learning_rate 1e-5 \
    --model_name_or_path facebook/bart-base \
    --max_source_length 1024 \
    --eval_max_source_length 1024 --do_eval=True \
    --eval_steps 1000 --save_steps 1000 \
    --per_device_eval_batch_size 1 --per_device_train_batch_size 2 \
    --extra_metrics bertscore

For additional flags and options, see usage.py

Recommended settings

To evaluate with Unlimiformer

At evaluation time, we recommend the default value for each setting.

To train with Unlimiformer

For an inexpensive method, we recommend training as usual and using Unlimiformer during early stopping. To do so, set knn=True and leave all other values at default.

For best performance, there are 3 expensive settings for training. The best one varies by dataset.

  1. Set random_unlimiformer_training=True: this is the random-encoded training setting from the paper
  2. Set unlimiformer_training=True: this is the retrieval training setting from the paper
  3. Set random_unlimiformer_training=True AND unlimiformer_training=True: this is the alternating training setting from the paper

See Table 5 in the paper for a more detailed breakdown of relative training costs.

Tips for very large inputs

For training

For evaluation (including early stopping)

Trained models

The following models from the paper are available on Hugging Face. Please note that you must add the Unlimiformer-specific files to your repository, and load these models with test_unlimiformer=True. If you download these models from Hugging Face, they may not use Unlimiformer by default!

Table 3: low-cost training methods

DatasetMethodHugging Face link
GovReportBaseline: BART-baseabertsch/bart-base-govreport
GovReportBART-base + Unlimiformer early stoppingabertsch/unlimiformer-bart-govreport-earlyk
SummScreenBaseline: BART-baseabertsch/bart-base-summscreen
SummScreenBART-base + Unlimiformer early stoppingabertsch/unlimiformer-bart-summscreen-earlyk

Table 4: Long-range training methods

DatasetMethodHugging Face link
GovReportBART + Unlimiformer (alternating training)abertsch/unlimiformer-bart-govreport-alternating
SummScreenBART + Unlimiformer (retrieval training)abertsch/unlimiformer-bart-summscreen-retrieval

Table 5: BookSum

DatasetMethodHugging Face link
BookSumBaseline: BART-baseabertsch/bart-base-booksum
BookSumBART-base + Unlimiformer early stoppingabertsch/unlimiformer-bart-booksum-earlyk
BooksumBART-base + Unlimiformer (random-encoding training)abertsch/unlimiformer-bart-booksum-random-encoding
BooksumBART-base + Unlimiformer (alternating training)abertsch/unlimiformer-bart-booksum-alternating

Results

<img width="50%" alt="image" src="https://github.com/abertsch72/unlimiformer/assets/15002544/b800416e-a982-4d8c-8496-0dc1e1c1bfe5"> <img width="50%" alt="image" src="https://github.com/abertsch72/unlimiformer/assets/15002544/f1d74abc-45fd-4a2e-97ae-bdd95f2df9d3"> <img width="50%" alt="image" src="https://github.com/abertsch72/unlimiformer/assets/15002544/5b298599-3d55-4458-bdbe-5ec01696f68f">

Citation

If you use our method or models, please cite our paper:

@article{bertsch2023unlimiformer,
  title={Unlimiformer: Long-Range Transformers with Unlimited Length Input},
  author={Bertsch, Amanda and Alon, Uri and Neubig, Graham and Gormley, Matthew R},
  journal={arXiv preprint arXiv:2305.01625},
  year={2023}
}