Awesome
<div align="center"> <img src="doc/logo.jpg", width="400"> </div>AlphaPose (Old Version)
Alpha Pose is an accurate multi-person pose estimator, which is the first real-time open-source system that achieves 70+ mAP (72.3 mAP) on COCO dataset and 80+ mAP (82.1 mAP) on MPII dataset.** To match poses that correspond to the same person across frames, we also provide an efficient online pose tracker called Pose Flow. It is the first open-source online pose tracker that achieves both 60+ mAP (66.5 mAP) and 50+ MOTA (58.3 MOTA) on PoseTrack Challenge dataset.
Contents
- AlphaPose
- News!
- Contents
- Installation
- Quick Start
- Output
- Speeding Up AlphaPose
- Feedbacks
- Contributors
- Citation
- License
Installation
- Get the code and build related modules.
git clone https://github.com/ZhengZerong/AlphaPose.git
cd AlphaPose/human-detection/lib/
make clean
make
cd newnms/
make
cd ../../../
- Install Torch and TensorFlow(verson >= 1.2). You may also need to install cudnn.torch to resolve compatibility issues; see this link for more details. After that, install related dependencies by:
chmod +x install.sh
./install.sh
- Run fetch_models.sh to download our pre-trained models. Or download the models manually: output.zip(Google drive|Baidu pan), final_model.t7(Google drive|Baidu pan)
chmod +x fetch_models.sh
./fetch_models.sh
Quick Start
- Demo: Run AlphaPose for all images in a folder and visualize the results with:
./run.sh --indir examples/demo/ --outdir examples/results/ --vis
The visualized results will be stored in examples/results/RENDER. To easily process images/video and display/save the results, please see doc/run.md. If you get any problems, you can check the doc/faq.md.
- Video: You can see our video demo here.
Output
Output (format, keypoint index ordering, etc.) in doc/output.md.
Speeding Up AlphaPose
We provide a fast
mode for human-detection that disables multi-scale testing. You can turn it on by adding --mode fast
.
And if you have multiple gpus on your machine or have large gpu memories, you can speed up the pose estimation step by using multi-gpu testing or large batch tesing with:
./run.sh --indir examples/demo/ --outdir examples/results/ --gpu 0,1,2,3 --batch 5
It assumes that you have 4 gpu cards on your machine and each card can run a batch of 5 images. Here is the recommended batch size for gpu with different size of memory:
GPU memory: 4GB -- batch size: 3
GPU memory: 8GB -- batch size: 6
GPU memory: 12GB -- batch size: 9
See doc/run.md for more details.
Feedbacks
If you get any problems, you can check the doc/faq.md first. If it can not solve your problems or if you find any bugs, don't hesitate to comment on GitHub or make a pull request!
Contributors
AlphaPose is based on RMPE(ICCV'17), authored by Hao-shu Fang, Shuqin Xie, Yu-Wing Tai and Cewu Lu, Cewu Lu is the corresponding author. Currently, it is developed and maintained by Hao-shu Fang, Jiefeng Li, Yuliang Xiu and Ruiheng Chang.
The main contributors are listed in doc/contributors.md.
Citation
Please cite these papers in your publications if it helps your research:
@inproceedings{fang2017rmpe,
title={{RMPE}: Regional Multi-person Pose Estimation},
author={Fang, Hao-Shu and Xie, Shuqin and Tai, Yu-Wing and Lu, Cewu},
booktitle={ICCV},
year={2017}
}
@inproceedings{xiu2018poseflow,
title = {{Pose Flow}: Efficient Online Pose Tracking},
author = {Xiu, Yuliang and Li, Jiefeng and Wang, Haoyu and Fang, Yinghong and Lu, Cewu},
booktitle={BMVC},
year = {2018}
}
License
AlphaPose is freely available for free non-commercial use, and may be redistributed under these conditions. For commercial queries, contact Cewu Lu