Awesome
STRPM (CVPR2022)
Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Wen Gao.
Official PyTorch Code for "STRPM: A Spatiotemporal Residual Predictive Model for High-Resolution Video Prediction" [paper]
Requirements
- PyTorch 1.7
- CUDA 11.0
- CuDNN 8.0.5
- python 3.6.7
Installation
Create conda environment:
$ conda create -n STRPM python=3.6.7
$ conda activate STRPM
$ pip install -r requirements.txt
$ conda install pytorch==1.7 torchvision cudatoolkit=11.0 -c pytorch
Download repository:
$ git clone git@github.com:ZhengChang467/STRPM.git
Test
For quick start, the pretrained models and the example data are needed to be downloaded to the following folders,
To test our model on the UCF Sport dataset, run the code in the PowerShell using:
$ python STRPM_run.py --dataset ucfsport
The predictions from the UCF Sport dataset are shown as follows (ground truth (top) and predictions (bottom))
<img src="result.gif" width="256" height="512">To test our model on the Human3.6M dataset, run the code in the PowerShell using:
$ python STRPM_run.py --dataset human36m
To test our model on the SJTU4K dataset, run the code in the terminal using:
$ python STRPM_run.py --dataset sjtu4k
The predicted results will be saved into path results/.
Train
We plan to share the train codes soon!
Citation
Please cite the following paper if you feel this repository useful.
@inproceedings{chang2022strpm,
title={STRPM: A Spatiotemporal Residual Predictive Model for High-Resolution Video Prediction},
author={Chang, Zheng and Zhang, Xinfeng and Wang, Shanshe and Ma, Siwei and Gao, Wen},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={13946--13955},
year={2022}
}
License
See MIT License