Awesome
GaussianFlow: Splatting Gaussian Dynamics for 4D Content Creation
Please refer to this repo for our cuda implementations of variables for calculating Gaussian flow.
For now, we refer the code below to calculate Gaussian flow with variables from above.
### We detach the variables related to t_1 in calculation of GaussianFlow such that the gradient backward
### only works for variables at t_2 while keeping variables at t_1 unchanged because
### variables at t_1 have been updated at t_1 - 1 with the same logic.
### This can accelerate the training process since less variables needed to be updated. BTW, not detach
#### variables at t_1 will not decrase the performance but slow down the training.
# Gaussian parameters at t_1
proj_2D_t_1 = render_t_1["proj_2D"]
gs_per_pixel = render_t_1["gs_per_pixel"].long()
weight_per_gs_pixel = render_t_1["weight_per_gs_pixel"]
x_mu = render_t_1["x_mu"]
cov2D_inv_t_1 = render_t_1["conic_2D"].detach()
# Gaussian parameters at t_2
proj_2D_t_2 = render_t_2["proj_2D"]
cov2D_inv_t_2 = render_t_2["conic_2D"]
cov2D_t_2 = render_t_2["conic_2D_inv"]
cov2D_t_2_mtx = torch.zeros([cov2D_t_2.shape[0], 2, 2]).cuda()
cov2D_t_2_mtx[:, 0, 0] = cov2D_t_2[:, 0]
cov2D_t_2_mtx[:, 0, 1] = cov2D_t_2[:, 1]
cov2D_t_2_mtx[:, 1, 0] = cov2D_t_2[:, 1]
cov2D_t_2_mtx[:, 1, 1] = cov2D_t_2[:, 2]
cov2D_inv_t_1_mtx = torch.zeros([cov2D_inv_t_1.shape[0], 2, 2]).cuda()
cov2D_inv_t_1_mtx[:, 0, 0] = cov2D_inv_t_1[:, 0]
cov2D_inv_t_1_mtx[:, 0, 1] = cov2D_inv_t_1[:, 1]
cov2D_inv_t_1_mtx[:, 1, 0] = cov2D_inv_t_1[:, 1]
cov2D_inv_t_1_mtx[:, 1, 1] = cov2D_inv_t_1[:, 2]
# B_t_2
U_t_2 = torch.svd(cov2D_t_2_mtx)[0]
S_t_2 = torch.svd(cov2D_t_2_mtx)[1]
V_t_2 = torch.svd(cov2D_t_2_mtx)[2]
B_t_2 = torch.bmm(torch.bmm(U_t_2, torch.diag_embed(S_t_2)**(1/2)), V_t_2.transpose(1,2))
# B_t_1 ^(-1)
U_inv_t_1 = torch.svd(cov2D_inv_t_1_mtx)[0]
S_inv_t_1 = torch.svd(cov2D_inv_t_1_mtx)[1]
V_inv_t_1 = torch.svd(cov2D_inv_t_1_mtx)[2]
B_inv_t_1 = torch.bmm(torch.bmm(U_inv_t_1, torch.diag_embed(S_inv_t_1)**(1/2)), V_inv_t_1.transpose(1,2))
# calculate B_t_2*B_inv_t_1
B_t_2_B_inv_t_1 = torch.bmm(B_t_2, B_inv_t_1)
# calculate cov2D_t_2*cov2D_inv_t_1
# cov2D_t_2cov2D_inv_t_1 = torch.zeros([cov2D_inv_t_2.shape[0],2,2]).cuda()
# cov2D_t_2cov2D_inv_t_1[:, 0, 0] = cov2D_t_2[:, 0] * cov2D_inv_t_1[:, 0] + cov2D_t_2[:, 1] * cov2D_inv_t_1[:, 1]
# cov2D_t_2cov2D_inv_t_1[:, 0, 1] = cov2D_t_2[:, 0] * cov2D_inv_t_1[:, 1] + cov2D_t_2[:, 1] * cov2D_inv_t_1[:, 2]
# cov2D_t_2cov2D_inv_t_1[:, 1, 0] = cov2D_t_2[:, 1] * cov2D_inv_t_1[:, 0] + cov2D_t_2[:, 2] * cov2D_inv_t_1[:, 1]
# cov2D_t_2cov2D_inv_t_1[:, 1, 1] = cov2D_t_2[:, 1] * cov2D_inv_t_1[:, 1] + cov2D_t_2[:, 2] * cov2D_inv_t_1[:, 2]
# isotropic version of GaussianFlow
#predicted_flow_by_gs = (proj_2D_next[gs_per_pixel] - proj_2D[gs_per_pixel].detach()) * weights.detach()
# full formulation of GaussianFlow
cov_multi = (B_t_2_B_inv_t_1[gs_per_pixel] @ x_mu.permute(0,2,3,1).unsqueeze(-1).detach()).squeeze()
predicted_flow_by_gs = (cov_multi + proj_2D_next[gs_per_pixel] - proj_2D[gs_per_pixel].detach() - x_mu.permute(0,2,3,1).detach()) * weights.detach()
# flow supervision loss
large_motion_msk = torch.norm(optical_flow, p=2, dim=-1) >= flow_thresh # flow_thresh = 0.1 or other value to filter out noise, here we assume that we have already loaded pre-computed optical flow somewhere as pseudo GT
Lflow = torch.norm((optical_flow - predicted_flow_by_gs.sum(0))[large_motion_msk], p=2, dim=-1).mean()
loss = loss + flow_weight * Lflow # flow_weight could be 1, 0.1, ... whatever you want.