Home

Awesome

Pytorch code for GAN models

This is the pytorch implementation of 3 different GAN models using same convolutional architecture.

Dependecies

The prominent packages are:

To install all the dependencies quickly and easily you should use pip

pip install -r requirements.txt

Training

Running training of DCGAN model on Fashion-MNIST dataset:

python main.py --model DCGAN \
               --is_train True \
               --download True \
               --dataroot datasets/fashion-mnist \
               --dataset fashion-mnist \
               --epochs 30 \
               --cuda True \
               --batch_size 64

Running training of WGAN-GP model on CIFAR-10 dataset:

python main.py --model WGAN-GP \
               --is_train True \
               --download True \
               --dataroot datasets/cifar \
               --dataset cifar \
               --generator_iters 40000 \
               --cuda True \
               --batch_size 64

Start tensorboard:

tensorboard --logdir ./logs/

Walk in latent space

Interpolation between a two random latent vector z over 10 random points, shows that generated samples have smooth transitions.

<img src="images/latent_fashion.png" width="350">           <img src="images/latent-mnist.png" width="350">

Generated examples MNIST, Fashion-MNIST, CIFAR-10

<img src="images/CIFAR-10.png" width="800"> <img src="images/Fashion-MNIST.png" width="770"> <img src="images/MNIST.png" width="800">

Inception score

About Inception score

<img src="images/inception_graph_generator_iters.png" width="400" >           <img src="images/inception_graph_time.png" width="400">

Useful Resources