Home

Awesome

(ICCV 2023) AttT2M

Code of ICCV 2023 paper: "AttT2M: Text-Driven Human Motion Generation with Multi-Perspective Attention Mechanism"

[Paper] [Bilibili Video]

The pre-train model and train/eval method are Updated. Please see below for more details.

<p align="center"> <img src="img/teaser.png" width="400px" alt="teaser"> </p>

If our paper or code is helpful to you, please cite our paper:

@InProceedings{Zhong_2023_ICCV,
    author    = {Zhong, Chongyang and Hu, Lei and Zhang, Zihao and Xia, Shihong},
    title     = {AttT2M: Text-Driven Human Motion Generation with Multi-Perspective Attention Mechanism},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2023},
    pages     = {509-519}
}

1. Results

1.1 Visual Results

Text-driven motion generation

<p align="center"> <img src="img/viz.gif" width="700px" alt="gif"> </p>

Compare with SOTA

<p align="center"> <img src="img/compare.gif" width="700px" alt="gif"> </p>

Generation diversity

<p align="center"> <img src="img/diversity.gif" width="700px" alt="gif"> </p>

Fine-grained generation

<p align="center"> <img src="img/fine-grained.gif" width="700px" alt="gif"> </p>

1.2 Quantitative Results

<p align="center"> <img src="img/table1.png" width="700px" alt="img"> </p>

For more results, please refer to our [Demo])

2. Installation

2.1. Environment

conda env create -f environment.yml
conda activate Att-T2M

The code was tested on Python 3.8 and PyTorch 1.8.1.

2.2. Datasets and others

We use two dataset: HumanML3D and KIT-ML. For both datasets, the details about them can be found [here].
Motion & text feature extractors are also provided by t2m to evaluate our generated motions

3. Quick Start

1.First step: Download the pre-train models from Google Drive

pretrain_models/
   ├── HumanML3D/
      ├── Trans/
         ├──net_best_fid.pth
         ├──run.log
      ├── VQVAE/
         ├──net_last.pth
   ├── KIT/
      ├── Trans/
         ├──net_last_290000.pth
         ├──run.log
      ├── VQVAE/
         ├──net_last.pth
  1. Second step:Download other models from Google Drive

3.Third step:run the visualize script:

python vis.py

4. Train

Preparation: you need to download the necessary material from Google Drive:material1, material2

4.1. VQ-VAE

The VAVAE trian parameters are almost the same as T2M GPT

<details> <summary> VQ training </summary>
python3 train_vq.py \
--batch-size 256 \
--lr 2e-4 \
--total-iter 300000 \
--lr-scheduler 200000 \
--nb-code 512 \
--down-t 2 \
--depth 3 \
--dilation-growth-rate 3 \
--out-dir output \
--dataname t2m \
--vq-act relu \
--quantizer ema_reset \
--loss-vel 0.5 \
--recons-loss l1_smooth \
--exp-name VQVAE
</details>

4.2. GPT

The results are saved in the folder output.

<details> <summary> GPT training </summary>
python3 train_t2m_trans.py  \
--num_layers_cross 2 \
--exp-name GPT \
--batch-size 128 \
--num-layers 9 \
--embed-dim-gpt 1024 \
--nb-code 512 \
--n-head-gpt 16 \
--block-size 51 \
--ff-rate 4 \
--drop-out-rate 0.1 \
--resume-pth output/VQVAE/net_last.pth \
--vq-name VQVAE \
--out-dir output \
--total-iter 300000 \
--lr-scheduler 150000 \
--lr 0.0001 \
--dataname t2m \
--down-t 2 \
--depth 3 \
--quantizer ema_reset \
--eval-iter 10000 \
--pkeep 0.5 \
--dilation-growth-rate 3 \
--vq-act relu
</details>

5. Evaluation

<details> <summary> GPT eval </summary>
python3 GPT_eval_multi.py  \
--exp-name TEST_GPT \
--batch-size 128 \
--num-layers 9 \
--num_layers_cross 2 \
--embed-dim-gpt 1024 \
--nb-code 512 \
--n-head-gpt 16 \
--block-size 51 \
--ff-rate 4 \
--drop-out-rate 0.1 \
--resume-pth output/VQVAE/net_last.pth \
--vq-name VQVAE \
--out-dir output \
--total-iter 300000 \
--lr-scheduler 150000 \
--lr 0.0001 \
--dataname t2m \
--down-t 2 \
--depth 3 \
--quantizer ema_reset \
--eval-iter 10000 \
--pkeep 0.5 \
--dilation-growth-rate 3 \
--vq-act relu \
--resume-trans output/GPT/net_best_fid.pth

Please repalce "--resume-pth" and "--resume-trans" with the VQVAE and Transformer models you want to evaluate.

The evaluation for multimodality will take a long time. So for a quicker evaluation without multimodality, you can comment out line 452 and line 453 in ./utils/eval_trans.py

</details>

6. Acknowledgement