Awesome
Learning Graph-Level Representation for Drug Discovery
Paper Link: Learning Graph-Level Representation for Drug Discovery
Requirements
- Install DeepChem(july2017)
Usage
1.Clone the repository
git clone https://github.com/ZJULearning/graph_level_drug_discovery.git
2.Training
python train.py --gpu 0 --dataset pcba
Our train.py
only supports 6 datasets in MoleculeNet, including Tox21, ToxCast, HIV, MUV, PCBA, SAMPL.
Result
Database and baseline: MoleculeNet
Dataset | Split Method | Train | Valid | Test |
---|---|---|---|---|
Tox21 | Index | 0.965 | 0.839 | 0.848 |
Tox21 | Random | 0.964 | 0.842 | 0.854 |
Tox21 | Scaffold | 0.971 | 0.788 | 0.759 |
ToxCast | Index | 0.927 | 0.747 | 0.734 |
ToxCast | Random | 0.924 | 0.746 | 0.768 |
ToxCast | Scaffold | 0.929 | 0.696 | 0.657 |
PCBA | Index | 0.904 | 0.869 | 0.864 |
PCBA | Random | 0.899 | 0.863 | 0.867 |
PCBA | Scaffold | 0.907 | 0.847 | 0.845 |
Citation
Please cite our work in your publications if it helps your research:
@article{Li2017Learning,
Title={Learning Graph-Level Representation for Drug Discoveryk},
Journal={arXiv preprint arXiv:1709.03741},
Author={Junying Li, Deng Cai, Xiaofei He},
Year={2017},
}