Home

Awesome

Learning Graph-Level Representation for Drug Discovery

Paper Link: Learning Graph-Level Representation for Drug Discovery

Requirements

Usage

1.Clone the repository

git clone https://github.com/ZJULearning/graph_level_drug_discovery.git

2.Training

python train.py --gpu 0 --dataset pcba

Our train.py only supports 6 datasets in MoleculeNet, including Tox21, ToxCast, HIV, MUV, PCBA, SAMPL.

Result

Database and baseline: MoleculeNet

DatasetSplit MethodTrainValidTest
Tox21Index0.9650.8390.848
Tox21Random0.9640.8420.854
Tox21Scaffold0.9710.7880.759
ToxCastIndex0.9270.7470.734
ToxCastRandom0.9240.7460.768
ToxCastScaffold0.9290.6960.657
PCBAIndex0.9040.8690.864
PCBARandom0.8990.8630.867
PCBAScaffold0.9070.8470.845

Citation

Please cite our work in your publications if it helps your research:

@article{Li2017Learning,
  Title={Learning Graph-Level Representation for Drug Discoveryk},
  Journal={arXiv preprint arXiv:1709.03741},
  Author={Junying Li, Deng Cai, Xiaofei He},
  Year={2017},
}