Awesome
<h1 align="center">FPGA & FreeNet</h1> <h5 align="center">Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification</h5> <h5 align="right">by <a href="http://zhuozheng.top/">Zhuo Zheng</a>, <a href="http://rsidea.whu.edu.cn/">Yanfei Zhong</a>, Ailong Ma and <a href="http://www.lmars.whu.edu.cn/prof_web/zhangliangpei/rs/index.html">Liangpei Zhang</a></h5> <div align="center"> <img src="https://github.com/Z-Zheng/images_repo/raw/master/fpga.png"><br><br> </div>This is an official implementation of FPGA framework and FreeNet in our TGRS 2020 paper "FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification".
We hope the FPGA framework can become a stronger and cleaner baseline for hyperspectral image classification research in the future.
News
- 2020/05/28, We release the code of FreeNet and FPGA framework.
Features
- Patch-free training and inference
- Fully end-to-end (w/o preprocess technologies, such as dimension reduction)
Citation
If you use FPGA framework or FreeNet in your research, please cite the following paper:
@article{zheng2020fpga,
title={FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification},
author={Zheng, Zhuo and Zhong, Yanfei and Ma, Ailong and Zhang, Liangpei},
journal={IEEE Transactions on Geoscience and Remote Sensing},
year={2020},
publisher={IEEE},
note={doi: {10.1109/TGRS.2020.2967821}}
}
Getting Started
1. Install SimpleCV
pip install --upgrade git+https://github.com/Z-Zheng/SimpleCV.git
2. Prepare datasets
It is recommended to symlink the dataset root to $FreeNet
.
The project should be organized as:
FreeNet
├── configs // configure files
├── data // dataset and dataloader class
├── module // network arch.
├── scripts
├── pavia // data 1
│ ├── PaviaU.mat
│ ├── PaviaU_gt.mat
├── salinas // data 2
│ ├── Salinas_corrected.mat
│ ├── Salinas_gt.mat
├── GRSS2013 // data 3
│ ├── 2013_IEEE_GRSS_DF_Contest_CASI.tif
│ ├── train_roi.tif
│ ├── val_roi.tif
3. run experiments
1. PaviaU
bash scripts/freenet_1_0_pavia.sh
2. Salinas
bash scripts/freenet_1_0_salinas.sh
3. GRSS2013
bash scripts/freenet_1_0_grss.sh
License
This source code is released under GPLv3 license.
For commercial use, please contact Prof. Zhong (zhongyanfei@whu.edu.cn).