Home

Awesome

<h3 align="center">Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework:<br>from natural disasters to man-made disasters</h3> <h5 align="right">by <a href="http://zhuozheng.top/">Zhuo Zheng</a>, <a href="http://rsidea.whu.edu.cn/">Yanfei Zhong</a>, <a href="https://junjue-wang.github.io/homepage/">Junjue Wang</a>, Ailong Ma and <a href="http://www.lmars.whu.edu.cn/prof_web/zhangliangpei/rs/index.html">Liangpei Zhang</a></h5>

[Paper] [BibTeX]

<div align="center"> <img src="https://raw.githubusercontent.com/Z-Zheng/images_repo/master/ChangeOS%400%2C25x.png"><br><br> </div>

This is an official implementation of ChangeOS in our RSE 2021 paper Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: from natural disasters to man-made disasters.


Highlights

Getting Started

Installation

pip install changeos

Requirements:

Usage

# changeos has four APIs
# (e.g., 'list_available_models', 'from_name', 'visualize', 'demo_data')
import changeos


# constructing ChangeOS model
# support 'changeos_r18', 'changeos_r34', 'changeos_r50', 'changeos_r101'
model = changeos.from_name('changeos_r101') # take 'changeos_r101' as example

# load your data or our prepared demo data
# numpy array of shape [1024, 1024, 3], [1024, 1024, 3]
pre_disaster_image, post_disaster_image = changeos.demo_data()

# model inference
loc, dam = model(pre_disaster_image, post_disaster_image)

# put color map on raw prediction
loc, dam = changeos.visualize(loc, dam)

# visualize by matplotlib
import matplotlib.pyplot as plt
plt.subplot(121)
plt.imshow(loc)
plt.subplot(122)
plt.imshow(dam)
plt.show()

<a name="Citation"></a>Citation

If you use ChangeOS in your research, please cite the following paper:

@article{zheng2021building,
  title={Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: from natural disasters to man-made disasters},
  author={Zheng, Zhuo and Zhong, Yanfei and Wang, Junjue and Ma, Ailong and Zhang, Liangpei},
  journal={Remote Sensing of Environment},
  volume={265},
  pages={112636},
  year={2021},
  publisher={Elsevier}
}