Home

Awesome

TradingGym

Build Status

TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated the framework form. Not only traning env but also has backtesting and in the future will implement realtime trading env with Interactivate Broker API and so on.

This training env originally design for tickdata, but also support for ohlc data format. WIP.

Installation

git clone https://github.com/Yvictor/TradingGym.git
cd TradingGym
python setup.py install

Getting Started

import random
import numpy as np
import pandas as pd
import trading_env

df = pd.read_hdf('dataset/SGXTW.h5', 'STW')

env = trading_env.make(env_id='training_v1', obs_data_len=256, step_len=128,
                       df=df, fee=0.1, max_position=5, deal_col_name='Price', 
                       feature_names=['Price', 'Volume', 
                                      'Ask_price','Bid_price', 
                                      'Ask_deal_vol','Bid_deal_vol',
                                      'Bid/Ask_deal', 'Updown'])

env.reset()
env.render()

state, reward, done, info = env.step(random.randrange(3))

### randow choice action and show the transaction detail
for i in range(500):
    print(i)
    state, reward, done, info = env.step(random.randrange(3))
    print(state, reward)
    env.render()
    if done:
        break
env.transaction_details
indexdatetimebidaskpricevolumeserial_numberdealin
02010-05-25 08:45:007188.07188.07188.0527.00.00.0
12010-05-25 08:45:007188.07189.07189.01.01.01.0
22010-05-25 08:45:007188.07189.07188.01.02.0-1.0
32010-05-25 08:45:007188.07189.07188.04.03.0-1.0
42010-05-25 08:45:007188.07189.07188.02.04.0-1.0

serial_number -> serial num of deal at each day recalculating

gif

Training

simple dqn

policy gradient

actor-critic

A3C with RNN

Backtesting

env = trading_env.make(env_id='backtest_v1', obs_data_len=1024, step_len=512,
                       df=df, fee=0.1, max_position=5, deal_col_name='Price', 
                        feature_names=['Price', 'Volume', 
                                       'Ask_price','Bid_price', 
                                       'Ask_deal_vol','Bid_deal_vol',
                                       'Bid/Ask_deal', 'Updown'])
class YourAgent:
    def __init__(self):
        # build your network and so on
        pass
    def choice_action(self, state):
        ## your rule base conditon or your max Qvalue action or Policy Gradient action
         # action=0 -> do nothing
         # action=1 -> buy 1 share
         # action=2 -> sell 1 share
        ## in this testing case we just build a simple random policy 
        return np.random.randint(3)
agent = YourAgent()

transactions = []
while not env.backtest_done:
    state = env.backtest()
    done = False
    while not done:
        state, reward, done, info = env.step(agent.choice_action(state))
        #print(state, reward)
        #env.render()
        if done:
            transactions.append(info)
            break
transaction = pd.concate(transactions)
transaction
<div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>step</th> <th>datetime</th> <th>transact</th> <th>transact_type</th> <th>price</th> <th>share</th> <th>price_mean</th> <th>position</th> <th>reward_fluc</th> <th>reward</th> <th>reward_sum</th> <th>color</th> <th>rotation</th> </tr> </thead> <tbody> <tr> <th>2</th> <td>1537</td> <td>2013-04-09 10:58:45</td> <td>Buy</td> <td>new</td> <td>277.1</td> <td>1.0</td> <td>277.100000</td> <td>1.0</td> <td>0.000000e+00</td> <td>0.000000e+00</td> <td>0.000000</td> <td>1</td> <td>1</td> </tr> <tr> <th>5</th> <td>3073</td> <td>2013-04-09 11:47:26</td> <td>Sell</td> <td>cover</td> <td>276.8</td> <td>-1.0</td> <td>277.100000</td> <td>0.0</td> <td>-4.000000e-01</td> <td>-4.000000e-01</td> <td>-0.400000</td> <td>2</td> <td>2</td> </tr> <tr> <th>10</th> <td>5633</td> <td>2013-04-09 13:23:40</td> <td>Sell</td> <td>new</td> <td>276.9</td> <td>-1.0</td> <td>276.900000</td> <td>-1.0</td> <td>0.000000e+00</td> <td>0.000000e+00</td> <td>-0.400000</td> <td>2</td> <td>1</td> </tr> <tr> <th>11</th> <td>6145</td> <td>2013-04-09 13:30:36</td> <td>Sell</td> <td>new</td> <td>276.7</td> <td>-1.0</td> <td>276.800000</td> <td>-2.0</td> <td>1.000000e-01</td> <td>0.000000e+00</td> <td>-0.400000</td> <td>2</td> <td>1</td> </tr> <tr> <th>...</th> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> </tr> <tr> <th>211</th> <td>108545</td> <td>2013-04-19 13:18:32</td> <td>Sell</td> <td>new</td> <td>286.7</td> <td>-1.0</td> <td>286.525000</td> <td>-2.0</td> <td>-4.500000e-01</td> <td>0.000000e+00</td> <td>30.650000</td> <td>2</td> <td>1</td> </tr> <tr> <th>216</th> <td>111105</td> <td>2013-04-19 16:02:01</td> <td>Sell</td> <td>new</td> <td>289.2</td> <td>-1.0</td> <td>287.416667</td> <td>-3.0</td> <td>-5.550000e+00</td> <td>0.000000e+00</td> <td>30.650000</td> <td>2</td> <td>1</td> </tr> <tr> <th>217</th> <td>111617</td> <td>2013-04-19 17:54:29</td> <td>Sell</td> <td>new</td> <td>289.2</td> <td>-1.0</td> <td>287.862500</td> <td>-4.0</td> <td>-5.650000e+00</td> <td>0.000000e+00</td> <td>30.650000</td> <td>2</td> <td>1</td> </tr> <tr> <th>218</th> <td>112129</td> <td>2013-04-19 21:36:21</td> <td>Sell</td> <td>new</td> <td>288.0</td> <td>-1.0</td> <td>287.890000</td> <td>-5.0</td> <td>-9.500000e-01</td> <td>0.000000e+00</td> <td>30.650000</td> <td>2</td> <td>1</td> </tr> <tr> <th>219</th> <td>112129</td> <td>2013-04-19 21:36:21</td> <td>Buy</td> <td>cover</td> <td>288.0</td> <td>5.0</td> <td>287.890000</td> <td>0.0</td> <td>0.000000e+00</td> <td>-1.050000e+00</td> <td>29.600000</td> <td>1</td> <td>2</td> </tr> </tbody> </table> <p>128 rows × 13 columns</p> </div>

exmaple of rule base usage

env = trading_env.make(env_id='backtest_v1', obs_data_len=10, step_len=1,
                       df=df, fee=0.1, max_position=5, deal_col_name='Price', 
                       feature_names=['Price', 'MA'])
class MaAgent:
    def __init__(self):
        pass
        
    def choice_action(self, state):
        if state[-1][0] > state[-1][1] and state[-2][0] <= state[-2][1]:
            return 1
        elif state[-1][0] < state[-1][1] and state[-2][0] >= state[-2][1]:
            return 2
        else:
            return 0
# then same as above