Awesome
Heterogeneous-Deep-Graph-Infomax
Parameter Setting:
HDGI-A: <br>
Node-level dimension: 16<br> Attention head: 4<br> Semantic-level attention vector: 8<br> learning rate: 0.02<br>
HDGI-C: <br>
Node-level dimension: 64<br> Semantic-level attention vector: 8<br> learning rate: 0.02<br>
GAT:<br>
Node-level dimension: 16<br> Attention head: 4<br> learning rate: 0.005<br> Drop out ratio: 0.6<br>
GCN:<br>
Hidden-unit dimension: 64<br> learning rate: 0.01<br> Drop out ratio: 0.5<br>
RGCN:<br>
Hidden-unit dimension: 16<br> learning rate: 0.01<br> Drop out ratio: 0<br>
Metapath2Vec:<br>
Embedding dimension: 100<br> learning rate: 0.01<br> negative-samples: 5<br> Window: 1<br>
HAN:<br>
Node-level dimension: 16<br> Attention head: 4<br> Semantic-level dimension: 8<br> learning rate: 0.005<br> Node-level Drop out ratio: 0.6<br> Semantic-level Drop out ratio: 0.6<br>
Deepwalk:<br>
Number of walks per node: 10<br> Dimensions of word embeddings: 128<br> Length of random walk: 30<br> Window size for skipgram: 5<br>
DGI:<br>
Hidden-unit dimension: 64<br> learning rate: 0.001<br> Drop out ratio: 0<br>