Awesome
<h2 align="center"><code>πTensorFlow2.0-Examplesπ!</code></h2> <p align="center">"<i>Talk is cheap, show me the code.</i>" ----- Linus Torvalds</p> <p align="center"> <a href="https://github.com/YunYang1994/TensorFlow2.0-Examples/tree/master"> <img src="https://img.shields.io/badge/Branch-master-green.svg?longCache=true" alt="Branch"> </a> <a href="https://github.com/YunYang1994/TensorFlow2.0-Examples/stargazers"> <img src="https://img.shields.io/github/stars/YunYang1994/TensorFlow2.0-Examples.svg?label=Stars&style=social" alt="Stars"> </a> <a href="https://github.com/YunYang1994/TensorFlow2.0-Examples/network/members"> <img src="https://img.shields.io/github/forks/YunYang1994/TensorFlow2.0-Examples.svg?label=Forks&style=social" alt="Forks"> </a> </a> <a href="https://github.com/sindresorhus/awesome"> <img src="https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg" alt="Awesome"> </a> </a> <a href="https://github.com/YunYang1994/TensorFlow2.0-Examples/blob/master/LICENSE"> <img src="https://img.shields.io/github/license/mashape/apistatus.svg?maxAge=2592000" alt="Awesome"> </p> <div align="center"> <sub>Created by <a href="https://github.com/YunYang1994">YunYang1994</a> </div> <br>This tutorial was designed for easily diving into TensorFlow2.0. it includes both notebooks and source codes with explanation. It will be continuously updated ! ππππππ
Contents
1 - Introduction
- Hello World (notebook) (code). Very simple example to learn how to print "hello world" using TensorFlow.
- Variable (notebook) (code). Learn to use variable in tensorflow.
- Basical operation (notebook) (code). A simple example that covers TensorFlow basic operations.
- Activation (notebook) (code). Start to know some activation functions in tensorflow.
- GradientTape (notebook) (code). Introduce a key technique for automatic differentiation
2 - Basical Models
- Linear Regression (notebook) (code). Implement a Linear Regression with TensorFlow.
- Logistic Regression (notebook) (code). Implement a Logistic Regression with TensorFlow.
- Multilayer Perceptron Layer (notebook) (code). Implement Multi-Layer Perceptron Model with TensorFlow.
- CNN (notebook) (code). Implement CNN Model with TensorFlow.
3 - Neural Network Architecture
- VGG16 (notebook) (code)(paper). VGG16: Very Deep Convolutional Networks for Large-Scale Image Recognition.
- Resnet (notebook) (code)(paper). Resnet: Deep Residual Learning for Image Recognition. π₯π₯π₯
- AutoEncoder (notebook) (code)(paper). AutoEncoder: Reducing the Dimensionality of Data with Neural Networks.
4 - Object Detection
<p align="center"> <img width="70%" src="https://user-images.githubusercontent.com/30433053/67913231-4e2ac400-fbc7-11e9-9995-94ed6f7181d4.png" style="max-width:70%;"> </a> </p>- MTCNN (notebook) (code)(paper). MTCNN: Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks. (Face detection and Alignment) π₯π₯
- Faster R-CNN (notebook) (code)(paper). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.π₯π₯π₯π₯ γTO DOγ
5 - Image Segmentation
- FCN (notebook) (code)(paper). FCN: Fully Convolutional Networks for Semantic Segmentation. π₯π₯π₯π₯π₯
- Unet (notebook) (code)(paper). U-Net: Convolutional Networks for Biomedical Image Segmentation. π₯π₯
6 - Generative Adversarial Networks
- DCGAN (notebook) (code)(paper). Deep Convolutional Generative Adversarial Network.
- Pix2Pix (notebook) (code)(paper). Image-to-Image Translation with Conditional Adversarial Networks.