Home

Awesome

<h2 align="center"><code>πŸŽ‰TensorFlow2.0-ExamplesπŸŽ‰!</code></h2> <p align="center">"<i>Talk is cheap, show me the code.</i>" ----- Linus Torvalds</p> <p align="center"> <a href="https://github.com/YunYang1994/TensorFlow2.0-Examples/tree/master"> <img src="https://img.shields.io/badge/Branch-master-green.svg?longCache=true" alt="Branch"> </a> <a href="https://github.com/YunYang1994/TensorFlow2.0-Examples/stargazers"> <img src="https://img.shields.io/github/stars/YunYang1994/TensorFlow2.0-Examples.svg?label=Stars&style=social" alt="Stars"> </a> <a href="https://github.com/YunYang1994/TensorFlow2.0-Examples/network/members"> <img src="https://img.shields.io/github/forks/YunYang1994/TensorFlow2.0-Examples.svg?label=Forks&style=social" alt="Forks"> </a> </a> <a href="https://github.com/sindresorhus/awesome"> <img src="https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg" alt="Awesome"> </a> </a> <a href="https://github.com/YunYang1994/TensorFlow2.0-Examples/blob/master/LICENSE"> <img src="https://img.shields.io/github/license/mashape/apistatus.svg?maxAge=2592000" alt="Awesome"> </p> <div align="center"> <sub>Created by <a href="https://github.com/YunYang1994">YunYang1994</a> </div> <br>

This tutorial was designed for easily diving into TensorFlow2.0. it includes both notebooks and source codes with explanation. It will be continuously updated ! 🐍🐍🐍🐍🐍🐍

Contents

1 - Introduction

2 - Basical Models

3 - Neural Network Architecture

<p align="center"> <img width="65%" src="https://user-images.githubusercontent.com/30433053/68206851-b08d2580-0008-11ea-8b51-061e0cbead62.gif" style="max-width:65%;"> </a> </p>

4 - Object Detection

<p align="center"> <img width="70%" src="https://user-images.githubusercontent.com/30433053/67913231-4e2ac400-fbc7-11e9-9995-94ed6f7181d4.png" style="max-width:70%;"> </a> </p> <p align="center"> <img width="40%" src="https://user-images.githubusercontent.com/30433053/68547531-7e6f2f80-041d-11ea-8cfb-0c5a22af0921.jpg" style="max-width:40%;"> </a> </p> <p align="center"> <img width="65%" src="https://user-images.githubusercontent.com/30433053/67914531-656bb080-fbcb-11e9-9775-302a25faf747.png" style="max-width:65%;"> </a> </p> <p align="center"> <img width="56%" src="https://user-images.githubusercontent.com/30433053/68290134-5f416c80-00c2-11ea-8cbc-d6010ced4efd.png" style="max-width:56%;"> </a> </p> <p align="center"> <img width="65%" src="https://user-images.githubusercontent.com/30433053/68546623-54187480-0413-11ea-9396-0a698c5a2580.png" style="max-width:65%;"> </a> </p>

5 - Image Segmentation

<p align="center"> <img width="60%" src="https://user-images.githubusercontent.com/30433053/67917411-e62eaa80-fbd3-11e9-9fe1-95550cf559d7.png" style="max-width:60%;"> </a> </p> <p align="center"> <img width="50%" src="https://user-images.githubusercontent.com/30433053/67922238-2ba7a380-fbe5-11e9-96a0-55c6827bd024.png" style="max-width:50%;"> </a> </p>

6 - Generative Adversarial Networks

7 - Utils