Home

Awesome

MobilePose

MobilePose is a Tiny PyTorch implementation of single person 2D pose estimation framework. The aim is to provide the interface of the training/inference/evaluation, and the dataloader with various data augmentation options. And final trained model can satisfy basic requirements(speed+size+accuracy) for mobile device.

Some codes for networks and display are brought from:

  1. pytorch-mobilenet-v2
  2. Vanilla FCN, U-Net, SegNet, PSPNet, GCN, DUC
  3. Shufflenet-v2-Pytorch
  4. tf-pose-estimation
  5. dsntnn

NEWS!

Requirements

Evaluation Results

Model(+DUC+DSNTNN)Parmas(M)Flops(G)AP@0.5:0.95AP@0.5AR@0.5:0.95AR@0.5Link
ResNet1812.261.6468.293.979.796.751.5M
MobileNetV23.910.4967.594.979.497.116.6M
ShuffleNetV22.920.3161.591.674.895.512.4M
SqueezeNet1.12.220.6358.492.172.395.89.3M
<div align="center"> <img src="./demo.png"> </div>

Features

Usage

  1. Installation:
pip install -r requirements.txt
  1. Training:
python training.py --model shufflenetv2 --gpu 0 --inputsize 224 --lr 1e-3 --batchsize 128 --t7 ./models/shufflenetv2_224_adam_best.t7
  1. Evaluation
ln -s cocoapi/PythonAPI/pycocotools
cd cocoapi/PythonAPI && make

python eval.py --t7 ./models/resnet18_224_adam_best.t7 --model resnet18 --gpu 0
  1. Web Camera Demo (MacBook)
python run_webcam.py --model squeezenet --inp_dim 224 --camera 0

Contributors

MobilePose is developed and maintained by Yuliang Xiu, Zexin Chen and Yinghong Fang. Thanks for Siyuan Pan's implementation of mnn version.

License

MobilePose is freely available for free non-commercial use. For commercial queries, please contact Cewu Lu.