Home

Awesome

Few-shot Text Classification with Distributional Signatures

This repository contains the code and data for our ICLR 2020 paper:

Few-shot Text Classification with Distributional Signatures. Yujia Bao, Menghua Wu, Shiyu Chang and Regina Barzilay.

If you find this work useful and use it on your own research, please cite our paper.

@inproceedings{
	bao2020fewshot,
	title={Few-shot Text Classification with Distributional Signatures},
	author={Yujia Bao and Menghua Wu and Shiyu Chang and Regina Barzilay},
	booktitle={International Conference on Learning Representations},
	year={2020}
}

Overview

Our goal is to improve few-shot classification performance by learning high-quality attention from the distributional signatures of the inputs. Given a particular episode, we extract relevant statistics from the source pool and the support set. Since these statistics only roughly approximate word importance for classification, we utilize an attention generator to translate them into high-quality attention that operates over words. This generated attention provides guidance for the downstream predictor, a ridge regressor, to quickly learn from a few labeled examples.

For further details on the model and various baselines, please see src/README.md.

<p align="center"> <img src="assets/fig-metalearning.png" width=80% /> </p>

Data

Download

We ran experiments on a total of 6 datasets. You may download our processed data here.

DatasetNotes
20 Newsgroups (link)Processed data available. We used the 20news-18828 version, available at the link provided.
RCV1 (link)Due to the licensing agreement, we cannot release the raw data. Instead, we provide a list of document IDs and labels. You may request the dataset from the link provided.
Reuters-21578 (link)Processed data available.
Amazon reviews (link)We used a subset of the product review data. Processed data available.
HuffPost headlines (link)Processed data available.
FewRel (link)Processed data available.

Format

Quickstart

Run our model with default settings. By default we load data from data/.

./bin/our.sh

Scripts for other baselines may be found under bin/.

Code

src/main.py may be run with one of three modes: train, test, and finetune.

Dependencies

Mac OS

As tryambak007 pointed out, there is an error when using multiprocessing.Queue. Please check out his fork (https://github.com/tryambak007/Distributional-Signatures) for the fix.