Home

Awesome

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer

This is the official pytorch implementation of the CoTr:<br />

Paper: CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer.

Requirements

CUDA 11.0<br /> Python 3.7<br /> Pytorch 1.7<br /> Torchvision 0.8.2<br />

Usage

0. Installation

pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

cd nnUNet
pip install -e .

cd CoTr_package
pip install -e .

1. Data Preparation

2. Training

cd CoTr_package/CoTr/run

3. Testing

4. Citation

If this code is helpful for your study, please cite:

@article{xie2021cotr,
  title={CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation},
  author={Xie, Yutong and Zhang, Jianpeng and Shen, Chunhua and Xia, Yong},
  booktitle={MICCAI},
  year={2021}
}
  

5. Acknowledgements

Part of codes are reused from the nnU-Net. Thanks to Fabian Isensee for the codes of nnU-Net.

Contact

Yutong Xie (yutong.xie678@gmail.com)