Awesome
UniFormaly: Towards Task-Agnostic Unified Anomaly Detection
This repository contains the official PyTorch implementation of UniFormaly: Towards Task-Agnostic Unified Anomaly Detection.
0. Prepare Enviroments
- Ubuntu 18.04
- Python 3.8.10
- conda 4.8.3
- NVIDIA A100 80GB
Install Conda
wget https://repo.anaconda.com/archive/Anaconda3-2020.07-Linux-x86_64.sh
if [[ "$(md5sum **Anaconda3**-2020.07-Linux-x86_64.sh | cut -d' ' -f1)" == "1046c40a314ab2531e4c099741530ada" ]]; then echo "OK"; else echo "No"; fi
chmod +x Anaconda3-2020.07-Linux-x86_64.sh
./Anaconda3-2020.07-Linux-x86_64.sh
rm Anaconda3-2020.07-Linux-x86_64.sh
After installation, please close terminal and reopen it!
Create Conda Virtual Environment
conda env create -f uniformaly_env.yaml
conda activate uniformaly
1. Prepare Dataset
To download MVTecAD, excute the following:
bash prepare_dataset.sh
Following the file structure below and set your dataset path.
- MVTecAD for one-class classification
YOUR_MVTEC_PATH/
├── bottle
│ ├── ground_truth
│ │ ├── broken_large
│ │ ├── broken_small
│ │ └── contamination
│ ├── train
│ │ ├── good
│ └── test
│ │ ├── broken_large
│ │ ├── broken_small
│ │ ├── contamination
│ │ └── good
├── cable
│ ├── ground_truth
│ │ ├── bent_wire
│ │ ├── cable_swap
│ │ ├── ...
│ ├── train
│ │ ├── good
│ └── test
│ ├── bent_wire
│ ├── cable_swap
│ ├── ...
│ └── good
├── ...
└── zipper
-
MVTecAD for multi-class classification
We reorganized MVTecAD into three branches for multi-class setup:
- ground_truth (contains anomaly masks)
- train (contains all normal images)
- test (contains all anomaly images)
YOUR_MVTEC_MULTI_PATH/
├── ground_truth
│ ├── bottle_broken_large
│ │ ├── 000_mask.png
│ │ ├── 001_mask.png
│ │ ├── ..
│ ├── bottle_broken_small
│ │ ├── 000.png
│ │ ├── 001.png
│ │ ├── ...
│ ├── bottle_contamination
│ ├── ...
│ └── zipper_squeezed_teeth
├── train
│ ├── bottle_good
│ │ ├── 000.png
│ │ ├── 001.png
│ │ ├── ...
│ ├── cable_good
│ ├── capsule_good
│ ├── ...
│ └── zipper_good
└── test
├── bottle_broken_large
│ ├── 000.png
│ ├── 001.png
│ ├── ...
├── bottle_broken_small
├── bottle_contamination
├── ...
└── zipper_squeezed_teeth
For Species-60, we provide details on 60 classes in our Appendix. If you would like to reproduce results for Species-60, please refer to our Appendix and prepare datasets as below.
YOUR_SPECIES60_PATH/
├── one_class_test
│ ├── abudefduf_vaigiensis
│ │ ├── 14683823.jpg
│ │ ├── 19987354.jpg
│ │ ├── ...
│ ├── acanthurus_coeruleus
│ ├── acarospora_socialis
│ ├── ...
│ └── zelus_renardii
└── one_class_train
├── abudefduf_vaigiensis
│ ├── 10026878.jpeg
│ ├── 10126060.jpg
│ ├── ...
├── acanthurus_coeruleus
│ ├── ...
├── ...
└── zelus_renardii
We also used CIFAR-10/100, ImageNet-30, MTD, BTAD, and CPD datasets.
2. How to execute UniFormaly
Defect Detection
bash run_defect.sh
Semantic Anomaly Detection
For semantic anomaly detection, we provide scripts for each dataset.
- Species-60
bash run_species.sh
- ImageNet-30
bash run_imagenet.sh
- CIFAR-10
bash run_cifar10.sh
- CIFAR-100
bash run_cifar100.sh
Multi-class Anomaly Detection
For multi-class anomaly detection, we provide scripts for each dataset.
- MVTecAD
bash run_mvtec_multi.sh
- Species-60
bash run_species_multi.sh
- CIFAR-10
bash run_cifar10_multi.sh
Anomaly Clustering
bash run_clustering.sh
3. Citation & Acknowledgements
Our repository is based on PatchCore.
Please consider citing them in your publications if they help your research.
@inproceedings{roth2022towards,
title={Towards total recall in industrial anomaly detection},
author={Roth, Karsten and Pemula, Latha and Zepeda, Joaquin and Sch{\"o}lkopf, Bernhard and Brox, Thomas and Gehler, Peter},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={14318--14328},
year={2022}
}
@inproceedings{caron2021emerging,
title={Emerging properties in self-supervised vision transformers},
author={Caron, Mathilde and Touvron, Hugo and Misra, Ishan and J{\'e}gou, Herv{\'e} and Mairal, Julien and Bojanowski, Piotr and Joulin, Armand},
booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
pages={9650--9660},
year={2021}
}
@article{zhou2021ibot,
title={ibot: Image bert pre-training with online tokenizer},
author={Zhou, Jinghao and Wei, Chen and Wang, Huiyu and Shen, Wei and Xie, Cihang and Yuille, Alan and Kong, Tao},
journal={arXiv preprint arXiv:2111.07832},
year={2021}
}