Home

Awesome

MSGNet (AAAI2024)

Paper Link:MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate Time Series Forecasting

Usage

Model

MSGNet employs several ScaleGraph blocks, each encompassing three pivotal modules: an FFT module for multi-scale data identification, an adaptive graph convolution module for inter-series correlation learning within a time scale, and a multi-head attention module for intra-series correlation learning.

<div align=center> <img src="https://github.com/YoZhibo/MSGNet/blob/main/pic/model1.jpg" width='45%'> <img src="https://github.com/YoZhibo/MSGNet/blob/main/pic/model2.jpg" width='47%'> </div>

Main Results

Forecast results with 96 review window and prediction length {96, 192, 336, 720}. The best result is represented in bold, followed by underline.

<div align=center> <img src="https://github.com/YoZhibo/MSGNet/blob/main/pic/main_result.jpg" width='75%'> </div>

Citation

@article{cai2023msgnet,
  title={MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate Time Series Forecasting},
  author={Cai, Wanlin and Liang, Yuxuan and Liu, Xianggen and Feng, Jianshuai and Wu, Yuankai},
  journal={arXiv preprint arXiv:2401.00423},
  year={2023}
}

Acknowledgement

We appreciate the valuable contributions of the following GitHub.