Home

Awesome

LF-InterNet

PyTorch implementation of "Spatial-Angular Interaction for Light Field Image Super-Resolution", ECCV 2020.

<br> <p align="center"> <a href="https://wyqdatabase.s3-us-west-1.amazonaws.com/LF-InterNet.mp4"><img src="https://raw.github.com/YingqianWang/LF-InterNet/master/Figs/demo-LF-InterNet.png" width="80%"></a> </p><br>

News: We recommend our newly-released repository BasicLFSR for the implementation of our LF-InterNet. BasicLFSR is an open-source and easy-to-use toolbox for LF image SR. A number of milestone methods have been implemented (retrained) in a unified framework in BasicLFSR.

<br>

Network Architecture:

<p align="center"> <img src="https://raw.github.com/YingqianWang/LF-InterNet/master/Figs/Network.jpg" width="80%"> </p><br>

Codes and Models:

Requirement:

Test:

Train:

Please switch to LF-InterNet_train for details.

Results:

Quantitative Results:

<p align="center"> <img src="https://raw.github.com/YingqianWang/LF-InterNet/master/Figs/Quantitative.jpg" width="70%"> </p>

Visual Comparisons:

<p align="center"> <img src="https://raw.github.com/YingqianWang/LF-InterNet/master/Figs/Qualitative.jpg" width="100%"> </p>

Efficiency:

<p align="center"> <img src="https://raw.github.com/YingqianWang/LF-InterNet/master/Figs/Efficiency.jpg" width="80%"> </p>

Performance w.r.t. Perspectives:

<p align="center"> <img src="https://raw.github.com/YingqianWang/LF-InterNet/master/Figs/PwrtP.jpg" width="100%"> </p>

Performance on Unseen Datasets:

<p align="center"> <img src="https://raw.github.com/YingqianWang/LF-InterNet/master/Figs/UnseenData.jpg" width="80%"> </p>

Performance on Real LFs:

<p align="center"> <img src="https://raw.github.com/YingqianWang/LF-InterNet/master/Figs/VisualReal.jpg" width="100%"> </p>

Citiation

If you find this work helpful, please consider citing the following paper:

@InProceedings{LF-InterNet,
  author    = {Wang, Yingqian and Wang, Longguang and Yang, Jungang and An, Wei and Yu, Jingyi and Guo, Yulan},
  title     = {Spatial-Angular Interaction for Light Field Image Super-Resolution},
  booktitle = {European Conference on Computer Vision (ECCV)},
  pages     = {290-308},
  year      = {2020},
}

Contact

Any question regarding this work can be addressed to wangyingqian16@nudt.edu.cn.