Home

Awesome

DistgSSR: Disentangling Mechanism for Light Field Statial Super-Resolution

<br> <p align="center"> <img src="https://raw.github.com/YingqianWang/DistgSSR/master/Figs/DistgSSR.png" width="90%"> </p>

This is the PyTorch implementation of the spatial SR method in our paper "Disentangling Light Fields for Super-Resolution and Disparity Estimation". Please refer to our paper and project page for details.<br>

News and Updates:

Preparation:

1. Requirement:

2. Datasets:

3. Generating training/test data:

4. Download our pretrained models:

We provide the models of each angular resolution (2×2 to 9×9) for 2×/4× SR. Download our models through the following links:

Upscaling FactorAngular ResolutionChannel DepthDownload Link
2×SR5×532DistgSSR_2xSR_5x5_C32.pth.tar
2×SR2×264DistgSSR_2xSR_2x2.pth.tar
2×SR3×364DistgSSR_2xSR_3x3.pth.tar
2×SR4×464DistgSSR_2xSR_4x4.pth.tar
2×SR5×564DistgSSR_2xSR_5x5.pth.tar
2×SR6×664DistgSSR_2xSR_6x6.pth.tar
2×SR7×764DistgSSR_2xSR_7x7.pth.tar
2×SR8×864DistgSSR_2xSR_8x8.pth.tar
2×SR9×964DistgSSR_2xSR_9x9.pth.tar
4×SR5×532DistgSSR_4xSR_5x5_C32.pth.tar
4×SR2×264DistgSSR_4xSR_2x2.pth.tar
4×SR3×364DistgSSR_4xSR_3x3.pth.tar
4×SR4×464DistgSSR_4xSR_4x4.pth.tar
4×SR5×564DistgSSR_4xSR_5x5.pth.tar
4×SR6×664DistgSSR_4xSR_6x6.pth.tar
4×SR7×764DistgSSR_4xSR_7x7.pth.tar
4×SR8×864DistgSSR_4xSR_8x8.pth.tar
4×SR9×964DistgSSR_4xSR_9x9.pth.tar

Train:

Test on the datasets:

Test on your own LFs:

Results:

Quantitative Results:

<p align="center"> <img src="https://raw.github.com/YingqianWang/DistgSSR/master/Figs/QuantitativeSSR.png" width="100%"> </p>

Visual Comparisons:

<p align="center"> <img src="https://raw.github.com/YingqianWang/DistgSSR/master/Figs/Visual-SSR.png" width="100%"> </p>

Efficiency:

<p align="center"> <img src="https://raw.github.com/YingqianWang/DistgSSR/master/Figs/Efficiency-SSR.png" width="50%"> </p>

Angular Consistency:

<p align="center"> <a href="https://wyqdatabase.s3.us-west-1.amazonaws.com/DistgLF-SpatialSR.mp4"><img src="https://raw.github.com/YingqianWang/DistgSSR/master/Figs/AngCons-SSR.png" width="80%"></a> </p>

Citiation

If you find this work helpful, please consider citing:

@Article{DistgLF,
    author    = {Wang, Yingqian and Wang, Longguang and Wu, Gaochang and Yang, Jungang and An, Wei and Yu, Jingyi and Guo, Yulan},
    title     = {Disentangling Light Fields for Super-Resolution and Disparity Estimation},
    journal   = {IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
    year      = {2022},   
}
<br>

Contact

Welcome to raise issues or email to wangyingqian16@nudt.edu.cn for any question regarding this work.