Home

Awesome

<!-- [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/attentional-feature-fusion/image-classification-on-cifar-100)](https://paperswithcode.com/sota/image-classification-on-cifar-100?p=attentional-feature-fusion) -->

Attentional Feature Fusion

MXNet/Gluon code for "Attentional Feature Fusion" https://arxiv.org/abs/2009.14082

What's in this repo so far:

<!-- * Code, trained models, and training logs for CIFAR-100 and ImageNet -->

PS:

Change Logs:

To Do:

In Progress:

Done:

Requirements

Install MXNet and Gluon-CV:

pip install --upgrade mxnet-cu101 gluoncv

If you are going to use autoaugment:

python3 -m pip install --upgrade "mxnet_cu101<2.0.0"
python3 -m pip install autogluon

Experiments

All trained model params and training logs are in ./params

The training commands / shell scripts are in cmd_scripts.txt

<!-- ### CIFAR-100 | Architecture | Params | Accuracy | | -------- | ------- | ----------- | | Attention-Augmented-Wide-ResNet-28-10 [[3]](#3) | 36.2M | 81.6 | | SENet-29 [[4]](#4) | 35.0M | 82.2 | | SKNet-29 [[7]](#7) | 27.7M | 82.7 | | PyramidNet-272-alpha-200 [[8]](#8) | 26.0M | 83.6 | | Neural Architecture Transfer (NAT-M4) [[9]](#9) | 9.0M | 88.3 | | AutoAugment+PyramidNet+ShakeDrop [[10]](#10) | 26.0M | 89.3 | | **AFF-ResNet-32** | **7.9M** | **90.8** | | **AFF-ResNeXt-38-32x4d (ours)** | **7.8M** | **91.2** | | **AFF-ResNeXt-47-32x4d (ours)** | **9.7M** | **91.8** | -->

ImageNet

ArchitectureParamstop-1 err.
ResNet-101 [1]42.5M23.2
Efficient-Channel-Attention-Net-101 [2]42.5M21.4
Attention-Augmented-ResNet-101 [3]45.4M21.3
SENet-101 [4]49.4M20.9
Gather-Excite-$\theta^{+}$-ResNet-101 [5]58.4M20.7
Local-Importance-Pooling-ResNet-101 [6]42.9M20.7
AFF-ResNet-50 (ours)30.3M20.3
iAFF-ResNet-50 (ours)35.1M20.2
iAFF-ResNeXt-50-32x4d (ours)34.7M19.78
<!-- | **AFF-ResNeXt-50-32x4d (ours)** | **29.9M** | **20.8** | -->

<img src=https://raw.githubusercontent.com/YimianDai/imgbed/master/github/aff/Localization_Reduced.jpg width=100%> <img src=https://raw.githubusercontent.com/YimianDai/imgbed/master/github/aff/SmallObject_Reduced.jpg width=100%>

PyTorch Version

@bobo0810 has contributed the PyTorch version. Please check the aff_pytorch directory for details.

Many thanks for @bobo0810 for his contribution.

Citation

Please cite our paper in your publications if our work helps your research. BibTeX reference is as follows.

@inproceedings{dai21aff,
  title   =  {Attentional Feature Fusion},
  author  =  {Yimian Dai and Fabian Gieseke and Stefan Oehmcke and Yiquan Wu and Kobus Barnard},
  booktitle =  {{IEEE} Winter Conference on Applications of Computer Vision, {WACV} 2021}
  year    =  {2021}
}

References

<a id="1">[1]</a> Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun: Deep Residual Learning for Image Recognition. CVPR 2016: 770-778

<a id="2">[2]</a> Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, Qinghua Hu: ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. CVPR 2020: 11531-11539

<a id="3">[3]</a> Irwan Bello, Barret Zoph, Quoc Le, Ashish Vaswani, Jonathon Shlens: Attention Augmented Convolutional Networks. ICCV 2019: 3285-3294

<a id="4">[4]</a> Jie Hu, Li Shen, Gang Sun: Squeeze-and-Excitation Networks. CVPR 2018: 7132-7141

<a id="5">[5]</a> Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Andrea Vedaldi: Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks. NeurIPS 2018: 9423-9433

<a id="6">[6]</a> Ziteng Gao, Limin Wang, Gangshan Wu: LIP: Local Importance-Based Pooling. ICCV 2019: 3354-3363

<a id="7">[7]</a> Xiang Li, Wenhai Wang, Xiaolin Hu, Jian Yang: Selective Kernel Networks. CVPR 2019: 510-519

<a id="8">[8]</a> Dongyoon Han, Jiwhan Kim, Junmo Kim: Deep Pyramidal Residual Networks. CVPR 2017: 6307-6315

<a id="9">[9]</a> Zhichao Lu, Gautam Sreekumar, Erik D. Goodman, Wolfgang Banzhaf, Kalyanmoy Deb, Vishnu Naresh Boddeti: Neural Architecture Transfer. CoRR abs/2005.05859 (2020)

<a id="10">[10]</a> Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, Quoc V. Le: AutoAugment: Learning Augmentation Strategies From Data. CVPR 2019: 113-123