Home

Awesome

Amodal Segmentation through Out-of-Task and Out-of-Distribution Generalization with a Bayesian Model

Paper | arXiv

Official PyTorch implementation for the CVPR 2022 paper: "Amodal Segmentation through Out-of-Task and Out-of-Distribution Generalization with a Bayesian Model"

<a href="#license"><img alt="License: MIT" src="https://img.shields.io/badge/license-MIT-blue.svg"/></a>

<img src="misc/teaser.jpg" width="570" />

Quick Start

Setup environment / Download models and dataset

conda env create -f environment.yml
conda activate amodal
bash download.sh

Run experiments

cd Code
python3 run_experiment.py

Optional: download.sh Description

Download models

Download dataset

Qualitative Results

<img src='misc/qualitative.jpg'/>

Citation

Please cite the following papers if you use the code directly or indirectly in your research projects.

@article{sun2021amodal,
  title=Amodal Segmentation through Out-of-Task and Out-of-Distribution Generalization with a Bayesian Model},
  author={Sun, Yihong and Kortylewski, Adam and Yuille, Alan},
  journal={arXiv preprint arXiv:2010.13175},
  year={2021}
}