Home

Awesome

I-BAU: Adversarial-Unlearning-of-Backdoors-via-Implicit-Hypergradient

Python 3.6 Pytorch 1.8.1 CUDA 10.1

Official Implementation of ICLR 2022 paper, Adversarial Unlearning of Backdoors via Implicit Hypergradient [openreview][video] . <br>

We propose a novel minimax formulation for removing backdoors from a given poisoned model based on a small set of clean data: <br> <img src="https://latex.codecogs.com/svg.image?\theta^{*}=\underset{\theta}{\arg&space;\min&space;}&space;\max&space;_{\|\delta\|&space;\leq&space;C_{\delta}}&space;H(\delta,&space;\theta):=\frac{1}{n}&space;\sum_{i=1}^{n}&space;L\left(f_{\theta}\left(x_{i}&plus;\delta\right),&space;y_{i}\right)&space;"> <br>

To solve the minimax problem, we propose the Implicit Backdoor Adversarial Unlearning (I-BAU) algorithm, which utilizes the implicit hypergradient to account for the interdependence between inner and outer optimization. I-BAU requires less computation to take effect; particularly, it is more than <span style="color:blue"> 13 X faster </span> than the most efficient baseline in the single-target attack setting. It can still remain effective in the extreme case where the defender can <span style="color:blue"> only access 100 clean samples </span> — a setting where <span style="color:blue"> all the baselines fail to produce acceptable results </span>. Picture1

Requirements

This code has been tested with Python 3.6, PyTorch 1.8.1 and cuda 10.1.

Usage & HOW-TO

python defense.py --dataset cifar10 --poi_path './checkpoint/badnets_8_02_ckpt.pth'  --optim Adam --lr 0.001 --n_rounds 3 --K 5

Clean data used for backdoor unlearning can be specified with argument --unl_set; if it is not specified, then a subset of data from testset will be used for unlearning. <br>

Poster

<center><img src="http://www.yi-zeng.com/wp-content/uploads/2022/04/ICLR-Poster.png"></center>

Citation

If you find our work useful please cite:

@inproceedings{zeng2021adversarial,
  title={Adversarial Unlearning of Backdoors via Implicit Hypergradient},
  author={Zeng, Yi and Chen, Si and Park, Won and Mao, Zhuoqing and Jin, Ming and Jia, Ruoxi},
  booktitle={International Conference on Learning Representations},
  year={2021}
}

Special thanks to...

Stargazers repo roster for @YiZeng623/I-BAU Forkers repo roster for @YiZeng623/I-BAU