Awesome
HOP-REVERIE-Challenge
This respository is the code of REVERIE-Challenge using HOP. The code is based on Recurrent-VLN-BERT. Thanks to Yicong Hong for releasing the Recurrent-VLN-BERT code.
Prerequisites
Installation
- Install docker Please check here to install docker.
- Create container
To pull the image:
If your CUDA version is 11.3, you can pull the image:docker pull starrychiao/hop-recurrent:v1
To create the container:docker push starrychiao/vlnbert-2022-3090:tagname
docker run -it --ipc host --shm-size=1024m --gpus all --name your_name --volume "your_directory":/root/mount/Matterport3DSimulator starrychiao/hop-recurrent:v1
- Set up
docker start "your container id or name" docker exec -it "your container id or name" /bin/bash cd /root/mount/Matterport3DSimulator
Data Preparation
Please follow the instructions below to prepare the data in directories:
-
MP3D navigability graphs:
connectivity
- Download the connectivity maps .
-
MP3D image features:
img_features
- Download the Scene features (ResNet-152-Places365).
-
REVERIE data:
data_v2
- Download the REVERIE data.
- Download the object features [reverie_obj_feats_v2.pkl] from Google Drive or Baidu Cloud Disk [code: nubg].
-
After downloading data you should see the following folder structure:
├── data_v2
│ └── BBoxS
│ └── reverie_obj_feats_v2.pkl
│ └── BBoxes_v2
├── REVERIE_train.json
├── REVERIE_val_seen.json
├── REVERIE_val_unseen.json
├── REVERIE_test.json
└── objpos.json
Initial HOP weights
- Pre-trained HOP weights:
load/hop
- Download the
pytorch_model.bin
from here.
- Download the
Training
bash run/agent.bash
Evaluating
- To generate
submit_test.json
bash run/test.bash
- You can also evaluate results on REVERIE seen and REVERIE unseen splits.
python ./r2r_src/eval.py