Awesome
-----------------------------------------------------------------------------------
Update 19:56 8.21 2023
Code is released, modify the 'epochs' to 'stop_epoch' in trainer.stssl_trainer
-----------------------------------------------------------------------------------
**(STSSL) Spatiotemporal Self-supervised Learning for Point Clouds in the Wild **
Our project is built based on SegContrast
Installing pre-requisites:
sudo apt install build-essential python3-dev libopenblas-dev
pip3 install -r requirements.txt
pip3 install torch ninja
Installing MinkowskiEngine with CUDA support:
pip3 install -U MinkowskiEngine==0.5.4 --install-option="--blas=openblas" -v --no-deps
Data Preparation
Download KITTI inside the directory your config.dataset_path/datasets
. The directory structure should be:
── your config.dataset_path/
└── dataset
└── sequences
├── 00/
│ ├── velodyne/
| | ├── 000000.bin
| | ├── 000001.bin
| | └── ...
│ └── labels/
| ├── 000000.label
| ├── 000001.label
| └── ...
├── 08/ # for validation
├── 11/ # 11-21 for testing
└── 21/
└── ...
Reproducing the results
for pre-training. (We use 8 RXT3090 GPUs for pre-training)
you can just run train_stssl.py which is in tools, remember to modify the paramters of path : )
Then for fine-tuning:
you can just run train_downstream.py which is in tools, remember to adjust the learning rate: )
Of course, you can also refer to SegContrast
Any questions, touch me at wuyanhao@stu.xjtu.edu.cn
Citation
If you use this repo, please cite as :
@inproceedings{wu2023spatiotemporal,
title={Spatiotemporal Self-supervised Learning for Point Clouds in the Wild},
author={Wu, Yanhao and Zhang, Tong and Ke, Wei and S{\"u}sstrunk, Sabine and Salzmann, Mathieu},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={5251--5260},
year={2023}
}