Awesome
Correspondence Transformers With Asymmetric Feature Learning and Matching Flow Super-Resolution(ACTR)
This is the official code for ACTR implemented with PyTorch.
Environment Settings
git clone https://github.com/YXSUNMADMAX/ACTR
cd ACTR
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install -U scikit-image
pip install git+https://github.com/albumentations-team/albumentations
pip install tensorboardX termcolor timm tqdm requests pandas
Evaluation
-
Download pre-trained weights on Link
-
Result on SPair-71k: python test.py --datapath "/path_to_dataset" --pretrained "/path_to_pretrained_model/spair" --benchmark spair
-
Results on PF-PASCAL: python test.py --datapath "/path_to_dataset" --pretrained "/path_to_pretrained_model/pfpascal" --benchmark pfpascal
Acknowledgement <a name="Acknowledgement"></a>
We borrow code from public projects (Thanks a lot !!!). We mainly borrow code from CATs.
BibTeX
If you find this research useful, please consider citing:
@inproceedings{sun2023correspondence,
title={Correspondence Transformers With Asymmetric Feature Learning and Matching Flow Super-Resolution},
author={Sun, Yixuan and Zhao, Dongyang and Yin, Zhangyue and Huang, Yiwen and Gui, Tao and Zhang, Wenqiang and Ge, Weifeng},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={17787--17796},
year={2023}
}