Home

Awesome

Joint Optimization Framework for Learning with Noisy Labels

This is an unofficial PyTorch implementation of Joint Optimization Framework for Learning with Noisy Labels. The official Chainer implementation is here.

Requirements

Usage

Train the network on the Symmmetric Noise CIFAR-10 dataset (noise rate = 0.7):

First,

python train.py --gpu 0 --out first_sn07 --lr 0.08 --alpha 1.2 --beta 0.8 --percent 0.7

to train and relabel the dataset.

Secondly,

python retrain.py --gpu 0 --out second_sn07 --label first_sn07

to retrain on the relabeled dataset.

Train the network on the Asymmmetric Noise CIFAR-10 dataset (noise rate = 0.4):

First,

python train.py --gpu 0 --out first_an04 --lr 0.03 --alpha 0.8 --beta 0.4 --percent 0.4 --asym

to train and relabel the dataset.

Secondly,

python retrain.py --gpu 0 --out second_an04 --label first_an04

to retrain on the relabeled dataset.

References