Awesome
Divergence Optimization for Noisy UniDA
This is a PyTorch implementation of Divergence Optimization for Noisy Universal Domain Adaptation.
Requirements
- Python 3.8
- PyTorch 1.6.0
- torchvision 0.7.0
- matplotlib
- numpy
- scikit-learn
Preparation
Downlaod following data:
and put them in data directory as follows:
Divergence-Optimization
│ README.md
│ train.py
│ run.py
│ ...
│
└───data
└───amazon
| └───images
└───dslr
└───webcam
└───Art
| └───Alarm_Clock
└───Clipart
└───Product
└───Real
└───visda
└───train
└───validation
Usage
Train the network with Office dataset under Noisy UniDA setting having pairflip noise (noise rate = 0.2):
python run.py --gpu 0 --dataset office --noise-type pairflip --percent 0.2
The trained model and output will be saved at result/pairflip_0.2/configs/office-train-config_opda
.
For more details and parameters, please refer to --help option.
Reference codes
References
- [1]: Qing Yu, Atsushi Hashimoto and Yoshitaka Ushiku. "Divergence Optimization for Noisy Universal Domain Adaptation", in CVPR, 2021.