Awesome
OP-Align: Object-level and Part-level Alignment for Self-supvervised Category-level Articulated Object Pose Estimation (ECCV2024 Oral)
OP-Align is a model designed for category-level articulated object pose esimation task with self-supervised learning. This repo contains the code of OP-Align model and our real-word dataset.
You can find our paper here.
If you find the code or dataset useful for your research, please cite our paper.
@inproceedings{che2024op,
title={OP-Align: Object-level and Part-level Alignment for Self-supvervised Category-level Articulated Object Pose Estimation},
author={Che, Yuchen and Furukawa, Ryo and Kanezaki, Asako},
booktitle={European Conference on Computer Vision},
pages={72--88},
year={2024},
organization={Springer}
}
Dataset
We provide a novel real-world dataset for category-level Articulated Object Pose Estimation task. You can download our dataset from here.
Each *.npz files contains point cloud captured from a single-view RGB-D camera. To visualize the data based on image format, reshape array into (480,640,-1).
- pc (307200, 3) # 480 * 640 * xyz
- color (307200, 3) # 480 * 640 * rgb
- detection (307200,) # 480 * 640, maskRCNN/SAM result
- segmentation (307200,) # 480 * 640, segmentation GT, 0 indicates background
- part (2, 15) # P * (9+3+3), per-part rotation, translation, scale
- joint (1, 6) # J * (3+3), per-joint direction, pivot
We also provide the HOI4D part of the synthetic dataset at here. Refer to EAP for more details. To run this dataset, add --dataset-type Light
at the end of training/testing script, and change --shape-type
into laptop_h
or safe
.
Enviroment
OP-Align uses a similar enviroment with E2PN and adds PyTorch3D module.
conda env create -f OP_environment.yml
conda activate OP
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
pip install "git+https://github.com/facebookresearch/pytorch3d.git"
cd vgtk; python setup.py build_ext --inplace; cd ..
mkdir log
ln -s <dataset_location> dataset
Finanlly, we also provide the trained model weights at here. You can download and unzip them at log
folder.
Running Script
Each category has different joint settings. Specifically, --shape-type
indicates the category, --nmask
indicates the number of parts, --njoints
indicates the number of joints, --rotation-range
indicates the limitation or joint movement and --joint-type
indicates whether the joint is a revolute or prismatic joint. See SPConvNets/options.py
for more details.
There should have a .csv file been generated at log/experiment-id
folder after the testing, which contains the accuracy for each test instance.
Training
python run_art.py train experiment --experiment-id <Any_Name_You_like> --run-mode train equi_settings --shape-type basket_output --nmasks 3 --njoints 2 model --rotation-range 120 --joint-type r
python run_art.py train experiment --experiment-id <Any_Name_You_like> --run-mode train equi_settings --shape-type drawer_output --nmasks 2 --njoints 1 model --rotation-range 120 --joint-type p
python run_art.py train experiment --experiment-id <Any_Name_You_like> --run-mode train equi_settings --shape-type laptop_output --nmasks 2 --njoints 1 model --rotation-range 120 --joint-type r
python run_art.py train experiment --experiment-id <Any_Name_You_like> --run-mode train equi_settings --shape-type suitcase_output --nmasks 2 --njoints 1 model --rotation-range 120 --joint-type r
python run_art.py train experiment --experiment-id <Any_Name_You_like> --run-mode train equi_settings --shape-type scissor_output --nmasks 2 --njoints 1 model --rotation-range 120 --joint-type r
Testing
python run_art.py train --resume-path <The_Path_of_PTH_File> experiment --experiment-id <Any_Name_You_like> --run-mode test equi_settings --shape-type basket_output --nmasks 3 --njoints 2 model --rotation-range 120 --joint-type r
python run_art.py train --resume-path <The_Path_of_PTH_File> experiment --experiment-id <Any_Name_You_like> --run-mode test equi_settings --shape-type drawer_output --nmasks 2 --njoints 1 model --rotation-range 120 --joint-type p
python run_art.py train --resume-path <The_Path_of_PTH_File> experiment --experiment-id <Any_Name_You_like> --run-mode test equi_settings --shape-type laptop_output --nmasks 2 --njoints 1 model --rotation-range 120 --joint-type r
python run_art.py train --resume-path <The_Path_of_PTH_File> experiment --experiment-id <Any_Name_You_like> --run-mode test equi_settings --shape-type suitcase_output --nmasks 2 --njoints 1 model --rotation-range 120 --joint-type r
python run_art.py train --resume-path <The_Path_of_PTH_File> experiment --experiment-id <Any_Name_You_like> --run-mode test equi_settings --shape-type scissor_output --nmasks 2 --njoints 1 model --rotation-range 120 --joint-type r
Acknowledgments
Our code is developed based on open-sourced existing works E2PN and EAP. Thanks for their great works.