Home

Awesome

AutoEval-Video: An Automatic Benchmark for Assessing Large Vision Language Models in Open-Ended Video Question Answering

Paper Leaderboard

AutoEval-Video is a comprehensive and challenging benchmark to assess the capabilities of large vision-language models. The highlights of AutoEval-Video include:

<!-- <p align="center"> <b><em>Examples of AutoEval-Video.</em></b> <img src="https://github.com/Xiuyuan-Chen/AutoEval-Video/blob/main/figs/cases.png"/> </p> <br> --> <br> <p align="center"> <b><em>Example Instance and Automatic Evaluation Process in AutoEval-Video.</em></b> </p> <p align="center"> <img src="https://github.com/Xiuyuan-Chen/AutoEval-Video/blob/main/figs/overview.png"/> </p> <br> <p align="center" style="font-size:50px;"> <b><em>Statistics of AutoEval-Video.</em></b> </p> <p align="center"> <em> (a) The distribution of the skill dimensions and the video themes in AutoEval-Video.</em> <img src="https://github.com/Xiuyuan-Chen/AutoEval-Video/blob/main/figs/distribution.png"/> </p> <p align="center"> <em> (b) Statistical information of the video and annotations.</em> </p> <p align="center"> <img src="https://github.com/Xiuyuan-Chen/AutoEval-Video/blob/main/figs/statistics_table.png"/> </p>

Please refer to our paper for more details about AutoEval-Video.

News

[2023.11.28] AutoEval-Video Leaderboard is released! Welcome to submit your model's results.

[2023.11.25] AutoEval-Video is released! Data and evaluation code is available now.

Leaderboard Submission

Welcome to submit your model results to AutoEval-Video Leaderboard. Please ensure your model results are prepared in JSON format, similar to prediction_sample.json.

Run Evaluation

Utilize our evaluation code, eval.py, to generate output.json, which contains your model's evaluation results. Please ensure your model results are prepared in JSON format, similar to prediction_sample.json. Execute the following evaluation script:

python3 eval.py --rule_path AutoEval-Video.json --pre_path <path_to_your_model_output> --output_dir ./results --ak <your_api_key>

The output.json file contains the accuracy of each instance, while the acc.txt file documents the overall accuracy score.

If you discover that any evaluation rules are not comprehensive, please feel free to submit an issue to us. We will refine the rules if there are identified problems. Additionally, the results on the leaderboard will be updated to reflect these changes.

License

AutoEval-Video is released under Apache License Version 2.0.

Declaration

All videos of AutoEval-Video are collected from YouTube (https://www.youtube.com), following the Creative Commons License (https://support.google.com/youtube/answer/2797468).

Citation

If you find AutoEval-Video useful for your research and applications, please cite using this BibTeX:

@article{chen2023autoevalvideo,
      title={AutoEval-Video: An Automatic Benchmark for Assessing Large Vision Language Models in Open-Ended Video Question Answering}, 
      author={Xiuyuan Chen and Yuan Lin and Yuchen Zhang and Weiran Huang},
      year={2023},
      journal={arXiv preprint arXiv:2311.14906}
}