Home

Awesome

MetaGAD (IEEE DSAA 2024)

The MetaGAD code for the paper: "MetaGAD: Meta Representation Adaptation for Few-Shot Graph Anomaly Detection".

image

Contributions

• We study a new problem of few-shot graph anomaly detection. <br/> • We propose a novel meta-learning approach to learn to transfer node representations from self-supervised tasks to assist supervised tasks with little labeled anomalies. <br/> • We conduct extensive experiments on six real-world datasets with synthetically injected anomalies and organic anomalies. The experimental results demonstrate the effectiveness of the proposed approach MetaGAD for graph anomaly detection.

Getting Started

Environment

Run

To get the result of Table 2 and Table 4, run the following scripts in a terminal as follows:

Cora dataset:

python run.py --dataset injected_cora --detector_lr 5e-4 --adaptor_lr 5e-4 --pos_weight 0.5 --num_epoch 5500 --num_run 3

Citeseer dataset:

python run.py --dataset injected_citeseer --detector_lr 5e-4 --adaptor_lr 5e-3 --pos_weight 1 --num_epoch 6500 --num_run 3

Amazon Photo dataset:

python run.py --dataset injected_amazon_photo --detector_lr 1e-4 --adaptor_lr 1e-2 --pos_weight 5 --num_epoch 3500 --num_run 3

Wiki dataset:

python run.py --dataset wiki --detector_lr 5e-4 --adaptor_lr 5e-4 --pos_weight 0.1 --num_epoch 8000 --num_run 3

Amazon Review dataset:

python run.py --dataset amazon_review --detector_lr 5e-4 --adaptor_lr 5e-4 --pos_weight 1 --num_epoch 6000 --num_run 3

Yelpchi dataset:

python run.py --dataset yelpchi --detector_lr 5e-4 --adaptor_lr 5e-4 --pos_weight 0.6 --num_epoch 15000 --num_run 3

Cite

If you find this repository useful for your work, please consider citing the paper as follows:

@article{xu2023metagad,
  title={MetaGAD: Learning to Meta Transfer for Few-shot Graph Anomaly Detection},
  author={Xu, Xiongxiao and Ding, Kaize and Chen, Canyu and Shu, Kai},
  journal={arXiv preprint arXiv:2305.10668},
  year={2023}
}