Home

Awesome

<center>Infrared Small Target Detection in Satellite Videos: A New Dataset and A Novel Recurrent Feature Refinement Framework</center>

IRSatVideo-LEO Dataset

IRSatVideo-LEO is a large-scale dataset for multi-frame infrared small target (MIRST) detection in LEO satellite videos. IRSatVideo-LEO is a semi-simulated dataset with a real satellite background image and synthesized satellite motion, target appearance, trajectory and intensity. IRSatVideo-LEO consists of 200 image sequences, 91021 frames and 218038 targets, and we provide instance-level segmentation annotations to offer a infrared LEO satellite videos benchmark for MIRST detection and tracking.<br>

Downloads

[Baidu Yun DownLoads]

Implementation

<center><img src="./pics/simulation.png" width="1000"/></center> Fig. 1 Implementation details of the IRSatVideo-LEO dataset. <br><br>

Table 1 Details of parameters for data generation.

<center><img src="./pics/parameters.png" width="900"/></center>

Benchmark Properties

Table 2 Statical comparisons among existing SIRST and MIRST detection datasets and our IRSatVideo-LEO dataset.

<center><img src="./pics/dataset_compare.png" width="900"/></center> <br> <center><img src="./pics/Seq_attribute.png" width="900"/></center> Fig. 2 Illustrations of sequence attributes.<br> <center><img src="./pics/Target_attribute.png" width="600"/></center> Fig. 3 Illustrations of target attributes.<br> <center><img src="./pics/complex_background.png" width="550"/></center> Fig. 4 Illustration of background attributes and example images.<br><br>

Recurrent Feature Refinement Framework

Overview

<center><img src="./pics/Framework.png" width="1000"/></center> Fig. 5 The proposed architecture of recurrent feature refinement framework. <br>

Requirements

Build

DCN Compiling

  1. Cd to ./codes/model/dcn.
  2. Run bash make.sh. The scripts will build D3D automatically and create some folders.
  3. See test.py for example usage.

Commands for Training

<be>

Datasets

Download the IRSatVideo-LEO Dataset dataset and put the images in ./codes/data/IRSatVideo-LEO.

  IRSatVideo-LEO
    └── images
        ├── AfricaWest-1_38
            ├── 0000.png
            ├── 0001.png
            ├── ...
        ├── EastAfrica-0
            ├── 0000.png
            ├── 0001.png
            ├── ...
        ├── ...
    └── masks
        ├── AfricaWest-1_38
            ├── 0000.png
            ├── 0001.png
            ├── ...
        ├── EastAfrica-0
            ├── 0000.png
            ├── 0001.png
            ├── ...
        ├── ...		
    └── video_idx
        ├── train_IRSatVideo-LEO.txt
        ├── test_IRSatVideo-LEO.txt
        ├── test_IRSatVideo-LEO-easy.txt
        ├── test_IRSatVideo-LEO-middle.txt
        ├── test_IRSatVideo-LEO-hard.txt
    └── img_idx
        ├── AfricaWest-1_38.txt
        ├── EastAfrica-0.txt
        ├── ...      

Commands for Test

Results

Table 3 $P_d$ ($\times 10^{-2}$), $F_a$($\times 10^{-6}$) values achieved by different methods on IRSatVideo-LEO dataset.

<center><img src="./pics/alg_compare.png" width="1000"/></center> <center><img src="./pics/visual_comp.png" width="1000"/></center> Fig. 6 Qualitative results of different methods.

Contact

Please contact us at yingxinyi18@nudt.edu.cn for any questions.

Citiation

@article{RFR,
  author = {Xinyi Ying, Li Liu, Zaipin Lin, Yangsi Shi, Yingqian Wang, Ruojing Li, Xu Cao, Boyang Li, Shilin Zhou},
  title = {Infrared Small Target Detection in Satellite Videos: A New Dataset and A Novel Recurrent Feature Refinement Framework},
  journal = {Arxiv},
  year = {2024},
}