Home

Awesome

ReID-PCB_RPP

This repository tries to implement the paper:Beyond Part Models: Person Retrieval with Refined Part Pooling and I almost follow the training details at the origin paper.

Market-1501 Results

FeaturemAP(%)Rank-1(%)
PCB(paper)G77.492.3
PCB(paper)H77.392.4
PCB(ours)G78.692.7
PCB(ours)H78.592.1
PCB+RPP(paper)G81.693.8
PCB+RPP(paper)H81.093.1
PCB+RPP(ours)G80.792.8
PCB+RPP(ours)H79.892.4

Prerequisites

Getting started

Dataset

Train

Train the model:

python train.py --gpu_ids 0,1 --batchsize 64 --data_dir your_data_path --save_dir your_model_save_path --RPP True

Test

Test the model(extract the features):

python test.py --gpu_ids 0 --which_epoch select the model --stage PCB or full --RPP True or False --feature_H True or False

Evaluate

Evaluate the model

python evaluate_gpu.py --gpu_ids 0 --reslut_mat the path of  the features mat
python evaluate_gpu.py --reslut_mat the path of  the features mat

Reference resources

Thanks to the layumi/Person_reID_baseline_pytorch. This repository only implements the part of PCB, I make some modifications on it and then add the RPP part.