Awesome
PyTorch implementation for Robust Object Re-identification with Coupled Noisy Labels (IJCV 2024).
LCNL extends the previous work Learning with Twin Noisy Labels for Visible-Infrared Person Re-Identification (CVPR 2022) by generalizing DART to both single- and cross-modality ReID tasks with improved loss function.
Introduction
LCNL framework
<img src="https://github.com/XLearning-SCU/2024-IJCV-LCNL/blob/main/figs/framework.png" width="780" height="268" />Requirements
- Python 3.7
- PyTorch ~1.7.1
- numpy
- scikit-learn
Datasets
SYSU-MM01 and RegDB
We follow ADP to obtain the datasets.
Market1501, Duke-MTMC and VeRi-776
We follow TransReID to obtain the datasets.
Visible-infrared ReID
Training
Modify the data_path
and specify the noise_ratio
to train the model.
# SYSU-MM01: noise_ratio = {0, 0.2, 0.5}
python run.py --gpu 0 --dataset sysu --data-path data_path --noise-rate 0. --savename sysu_lcnl_nr0 --op-type weighty
# RegDB: noise_ratio = {0, 0.2, 0.5}, trial = 1-10
python run.py --gpu 0 --dataset regdb --data-path data_path --noise-rate 0. --savename regdb_lcnl_nr0 --trial 1
Evaluation
Modify the data_path
and model_path
to evaluate the trained model.
# SYSU-MM01: mode = {all, indoor}
python test.py --gpu 0 --dataset sysu --data-path data-path --model_path model_path --resume-net1 'sysu_lcnl_nr0_net1.t' --resume-net2 'sysu_lcnl_nr0_net1.t' --mode all
# RegDB: --tvsearch or not (whether thermal to visible search)
python test.py --gpu 0 --dataset regdb --data-path data-path --model_path model_path --resume-net1 'regdb_lcnl_nr20_trial{}_net1.t' --resume-net2 'regdb_lcnl_nr20_trial{}_net2.t'
Reproduce
We provide the checkpoints (for evaluation) and noise indexes (should be placed on the dataset path for training) for result reproducing.
<!-- Note that the reproduced results would be slightly different from the results in the paper due to the code reshaping. -->Todo
- Release the code for vehicle ReID task.
- Release the code for visible ReID task.
Citation
If LCNL is useful for your research, please consider citing:
@article{yang2024lcnl,
title={Robust Object Re-identification with Coupled Noisy Labels},
author={Yang, Mouxing and Huang, Zhenyu and Peng, Xi},
journal={International Journal of Computer Vision},
year={2024},
publisher={Springer}
}
or the previous conference version:
@InProceedings{Yang_2022_CVPR,
author={Yang, Mouxing and Huang, Zhenyu and Hu, Peng and Li, Taihao and Lv, Jiancheng and Peng, Xi},
title={Learning With Twin Noisy Labels for Visible-Infrared Person Re-Identification},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month={June},
year={2022},
pages={14308-14317}
}
License
Acknowledgements
The code is based on ADP, TransReID and DART licensed under Apache 2.0.