Awesome
PyTorch implementation for Learning with Twin Noisy Labels for Visible-Infrared Person Re-Identification (CVPR 2022).
Introduction
DART framework
<img src="https://github.com/XLearning-SCU/2022-CVPR-DART/blob/main/figs/framework.png" width="760" height="268" />Requirements
- Python 3.7
- PyTorch ~1.7.1
- numpy
- scikit-learn
Datasets
SYSU-MM01 and RegDB
We follow ADP to obtain datasets.
Training and Evaluation
Training
Modify the data_path
and specify the noise_ratio
to train the model.
# SYSU-MM01: noise_ratio = {0, 0.2, 0.5}
python run.py --gpu 0 --dataset sysu --data-path data_path --noise-rate 0.2 --savename sysu_dart_nr20
# RegDB: noise_ratio = {0, 0.2, 0.5}, trial = 1-10
python run.py --gpu 0 --dataset regdb --data-path data_path --noise-rate 0.2 --savename regdb_dart_nr20 --trial 1
Evaluation
Modify the data_path
and model_path
to evaluate the trained model.
# SYSU-MM01: mode = {all, indoor}
python test.py --gpu 0 --dataset sysu --data-path data-path --model_path model_path --resume-net1 'sysu_dart_nr20_net1.t' --resume-net2 'sysu_dart_nr20_net2.t' --mode all
# RegDB: --tvsearch or not (whether thermal to visible search)
python test.py --gpu 0 --dataset regdb --data-path data-path --model_path model_path --resume-net1 'regdb_dart_nr20_trial{}_net1.t' --resume-net2 'regdb_dart_nr20_trial{}_net2.t'
Citation
If DART is useful for your research, please cite the following paper:
@InProceedings{Yang_2022_CVPR,
author={Yang, Mouxing and Huang, Zhenyu and Hu, Peng and Li, Taihao and Lv, Jiancheng and Peng, Xi},
title={Learning With Twin Noisy Labels for Visible-Infrared Person Re-Identification},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month={June},
year={2022},
pages={14308-14317}
}
License
Acknowledgements
The code is based on ADP licensed under Apache 2.0.