Awesome
STAEformer: Spatio-Temporal Adaptive Embedding Transformer
H. Liu*, Z. Dong*, R. Jiang#, J. Deng, J. Deng, Q. Chen, X. Song#, "Spatio-Temporal Adaptive Embedding Makes Vanilla Transformer SOTA for Traffic Forecasting", Proc. of 32nd ACM International Conference on Information and Knowledge Management (CIKM), 2023. (*Equal Contribution, #Corresponding Author)
Citation
@inproceedings{liu2023spatio,
title={Spatio-temporal adaptive embedding makes vanilla transformer sota for traffic forecasting},
author={Liu, Hangchen and Dong, Zheng and Jiang, Renhe and Deng, Jiewen and Deng, Jinliang and Chen, Quanjun and Song, Xuan},
booktitle={Proceedings of the 32nd ACM International Conference on Information and Knowledge Management},
pages={4125--4129},
year={2023}
}
CIKM23 Proceedings (including METRLA, PEMSBAY, PEMS04, PEMS07, PEMS08 results)
https://dl.acm.org/doi/abs/10.1145/3583780.3615160
Preprints (including METRLA, PEMSBAY, PEMS03, PEMS04, PEMS07, PEMS08 results)
Performance on Traffic Forecasting Benchmarks
<img width="600" alt="image" src="https://github.com/XDZhelheim/STAEformer/assets/57553691/abf009aa-b145-451c-aff6-27031d60a612">Required Packages
pytorch>=1.11
numpy
pandas
matplotlib
pyyaml
pickle
torchinfo
Training Commands
cd model/
python train.py -d <dataset> -g <gpu_id>
<dataset>
:
- METRLA
- PEMSBAY
- PEMS03
- PEMS04
- PEMS07
- PEMS08