Home

Awesome

Pythia

Structure-based self-supervised learning enables ultrafast prediction of stability changes upon mutations

Prerequisites

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip3 install -r requirements.txt

Usage

To use the Pythia, you can run it from the command line with the following options:

Basic Usage

cd pythia
python masked_ddg_scan.py

By default, this will process files in the directory ../s669_AF_PDBs/ using cuda:0 (GPU 0) if available.

Command Line Options

Examples

  1. Process all PDB files in the directory /path/to/directory/, using the first GPU and checking pLDDT values with a cutoff of 90:

    python masked_ddg_scan.py --input_dir "/path/to/directory/" --check_plddt --plddt_cutoff 90 --device cuda:0
    
  2. Process a single PDB file /path/to/file.pdb using the CPU:

    python masked_ddg_scan.py --pdb_filename "/path/to/file.pdb" --device cpu
    

Megascale dataset, S2648, S669 contains predictions and labels.

Train

  1. Download preprocessed files for training at CATH dataset or BioA dataset from the Google Drive:
    sbatch train_model.sh