Awesome
Multi-Faceted Distillation of Base-Novel Commonality for Few-shot Object Detection, ECCV 2022
This repo is built upon DeFRCN, where you can download the datasets and the pre-trained weights.
Requirements
Python == 3.7.10
Pytorch == 1.6.0
Torchvision == 0.7.0
Detectron2 == 0.3
CUDA == 10.1
File Structure
├── weight/
| ├── R-101.pkl
| └── resnet101-5d3b4d8f.pth
└── datasets/
├── coco/
│ ├── annotations/
│ ├── train2014/
│ └── val2014/
├── cocosplit/
├── VOC2007/
│ ├── Annotations/
│ ├── ImageSets/
│ └── JPEGImages/
├── VOC2012/
│ ├── Annotations/
│ ├── ImageSets/
│ └── JPEGImages/
└── vocsplit/
Training and Evaluation
- For VOC
sh voc_train.sh mfdc SPLIT_ID
- For COCO
sh coco_train.sh mfdc
Citation
If you find our code helpful in your research, please cite the following publication:
@inproceedings{wu2022multi,
title={Multi-faceted Distillation of Base-Novel Commonality for Few-Shot Object Detection},
author={Wu, Shuang and Pei, Wenjie and Mei, Dianwen and Chen, Fanglin and Tian, Jiandong and Lu, Guangming},
booktitle={European Conference on Computer Vision},
pages={578--594},
year={2022},
organization={Springer}
}
Contact
Please feel free to contact me (Email: wushuang9811@outlook.com) if you have any questions.