Awesome
Opinions Vary? Diagnosis First!
This is a pytorch implementation of paper "Opinions Vary? Diagnosis First!". We propose a novel method to learn the diagnosis-first segmentation from the multiple labeled data. This method beat the popular majority vote by a large margin.
Preparation
The code is run on pytorch1.8.1 + cuda 10.1.
Quick Start
Generate DFSim:
python val.py -net 'your_backbone' -mod val_ad -exp_name generate_dfsim -weights 'weights of diagnosis network'
Train Segmentation:
python train.py -net transunet -mod seg -exp_name repro_seg -base_weights 'weights of diagnosis network'
Segmentation Inference:
python val.py -net 'backbone' -mod set -exp_name val_seg -weights 'recorded weights'
See cfg.py for more avaliable parameters
Todo list
- add requirement
- del debug code
- cls validation
- function name alignment
- del trials
- dataset preprocess tools