Home

Awesome

RangeLDM

[ECCV 2024] Official implementation of "RangeLDM: Fast Realistic LiDAR Point Cloud Generation"

Models

KITTI360

ModelMMDFRDJSDCheckpointGenerated Point Clouds
RangeLDM3.07 × 10^−51074.90.045[PKU Disk]<br/>(115MB)[1k samples]
RangeDM4.14 × 10^−5899.00.040[PKU Disk]<br/>(401MB)[1k samples]

nuScenes

ModelMMDJSDCheckpointGenerated Point Clouds
RangeLDM1.9 × 10^−40.054[PKU Disk]<br/>(153MB)[1k samples]

Train

VAE

cd vae
python main.py --base configs/kitti360.yaml

LDM

cd ldm
accelerate launch train_unconditional.py --cfg configs/RangeLDM.yaml # for unconditional generation
accelerate launch train_conditional.py --cfg configs/upsample.yaml # for conditional generation

Evaluation

see metrics/metrics.md

Citation

If you find our work useful, please cite:

@article{hu2024rangeldm,
  title={RangeLDM: Fast Realistic LiDAR Point Cloud Generation},
  author={Hu, Qianjiang and Zhang, Zhimin and Hu, Wei},
  journal={arXiv preprint arXiv:2403.10094},
  year={2024}
}