Awesome
New
A simplified version of MELM with context in PyTorch is released [here] by vasgaowei.
Prerequisites
- Linux (tested on ubuntu 14.04LTS)
- NVIDIA GPU + CUDA CuDNN
- Torch7
Getting started
-
Install the dependencies
luarocks install hdf5 matio protobuf rapidjson loadcaffe xml
-
Download dataset, proposals and ImageNet pre-trained model
Download VOC2007 from: http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
Download proposals from: https://dl.dropboxusercontent.com/s/orrt7o6bp6ae0tc/selective_search_data.tgz
Download VGGF from: http://www.robots.ox.ac.uk/~vgg/software/deep_eval/releases/bvlc/VGG_CNN_F.caffemodel https://gist.githubusercontent.com/ksimonyan/a32c9063ec8e1118221a/raw/6a3b8af023bae65669a4ceccd7331a5e7767aa4e/VGG_CNN_F_deploy.prototxt
The data folder has the following structure:
$MELM/data/datasets/VOCdevkit_2007/ $MELM/data/datasets/VOCdevkit_2007/VOCcode $MELM/data/datasets/VOCdevkit_2007/VOC2007 $MELM/data/datasets/VOCdevkit_2007/... $MELM/data/datasets/proposals/ $MELM/data/models/ $MELM/data/results/
-
Install functions
cd ./MELM export DIR=$(pwd) cd $DIR/utils/c-cuda-functions sh install.sh cd $DIR/layers luarocks make
-
Train and test
cd $DIR sh Run_MELM.sh 0 VOC2007 VGGF SSW 0.1 None melm
Acknowledgements
This work would not have been possible without prior work: Vadim Kantorov's contextlocnet, Spyros Gidaris's LocNet, Sergey Zagoruyko's loadcaffe, Facebook FAIR's fbnn/Optim.lua.