Awesome
The HIST framework for stock trend forecasting
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".
Environment
- Install python3.7, 3.8 or 3.9.
- Install the requirements in requirements.txt.
- Install the quantitative investment platform Qlib and download the data from Qlib:
# install Qlib from source pip install --upgrade cython git clone https://github.com/microsoft/qlib.git && cd qlib python setup.py install # Download the stock features of Alpha360 from Qlib python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/cn_data --region cn --version v2
Reproduce the stock trend forecasting results
git clone https://github.com/Wentao-Xu/HIST.git
cd HIST
mkdir output
Reproduce our HIST framework
# CSI 100
python learn.py --model_name HIST --data_set csi100 --hidden_size 128 --num_layers 2 --outdir ./output/csi100_HIST
# CSI 300
python learn.py --model_name HIST --data_set csi300 --hidden_size 128 --num_layers 2 --outdir ./output/csi300_HIST
Reproduce the baselines
- MLP
# MLP on CSI 100
python learn.py --model_name MLP --data_set csi100 --hidden_size 512 --num_layers 3 --outdir ./output/csi100_MLP
# MLP on CSI 300
python learn.py --model_name MLP --data_set csi300 --hidden_size 512 --num_layers 3 --outdir ./output/csi300_MLP
- LSTM
# LSTM on CSI 100
python learn.py --model_name LSTM --data_set csi100 --hidden_size 128 --num_layers 2 --outdir ./output/csi100_LSTM
# LSTM on CSI 300
python learn.py --model_name LSTM --data_set csi300 --hidden_size 128 --num_layers 2 --outdir ./output/csi300_LSTM
- GRU
# GRU on CSI 100
python learn.py --model_name GRU --data_set csi100 --hidden_size 128 --num_layers 2 --outdir ./output/csi100_GRU
# GRU on CSI 300
python learn.py --model_name GRU --data_set csi300 --hidden_size 64 --num_layers 2 --outdir ./output/csi300_GRU
- SFM
# SFM on CSI 100
python learn.py --model_name SFM --data_set csi100 --hidden_size 64 --num_layers 2 --outdir ./output/csi100_SFM
# SFM on CSI 300
python learn.py --model_name SFM --data_set csi300 --hidden_size 128 --num_layers 2 --outdir ./output/csi300_SFM
- GATs
# GATs on CSI 100
python learn.py --model_name GATs --data_set csi100 --hidden_size 128 --num_layers 2 --outdir ./output/csi100_GATs
# GATs on CSI 300
python learn.py --model_name GATs --data_set csi300 --hidden_size 64 --num_layers 2 --outdir ./output/csi300_GATs
- ALSTM
# ALSTM on CSI 100
python learn.py --model_name ALSTM --data_set csi100 --hidden_size 64 --num_layers 2 --outdir ./output/csi100_ALSTM
# ALSTM on CSI 300
python learn.py --model_name ALSTM --data_set csi300 --hidden_size 128 --num_layers 2 --outdir ./output/csi300_ALSTM
- Transformer
# Transformer on CSI 100
python learn.py --model_name Transformer --data_set csi100 --hidden_size 32 --num_layers 3 --outdir ./output/csi100_Transformer
# Transformer on CSI 300
python learn.py --model_name Transformer --data_set csi300 --hidden_size 32 --num_layers 3 --outdir ./output/csi300_Transformer
-
ALSTM+TRA
We reproduce the ALSTM+TRA with its source code.
Citation
Please cite the following paper if you use this code in your work.
@article{xu2021hist,
title={HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information},
author={Xu, Wentao and Liu, Weiqing and Wang, Lewen and Xia, Yingce and Bian, Jiang and Yin, Jian and Liu, Tie-Yan},
journal={arXiv preprint arXiv:2110.13716},
year={2021}
}