Awesome
Pillar-based Object Detection for Autonomous Driving
Prerequisite
TensorFlow (https://www.tensorflow.org/install)
TensorFlow Addons (https://www.tensorflow.org/addons/overview)
Waymo Open Dataset (https://github.com/waymo-research/waymo-open-dataset)
Lingvo (https://github.com/tensorflow/lingvo)
Data
-
Download the data from https://waymo.com/open/
-
Pre-process the data using the script "data/generate_waymo_dataset.sh"
Train and eval
Check "train.py", "eval.py", and "config.py"
Evaluation using pretrained models
-
Download the weights from https://drive.google.com/file/d/16cFbbKfEXc5uH7V6xDw6fy3lVBCgHLNd/view?usp=sharing
-
For car,
python eval.py --class_id=1 --nms_iou_threshold=0.7 --pillar_map_size=256 --ckpt_path=/path/to/checkpoints --data_path=/path/to/data --model_dir=/path/to/results
For pedestrian,
python eval.py --class_id=2 --nms_iou_threshold=0.2 --pillar_map_size=512 --ckpt_path=/path/to/checkpoints --data_path=/path/to/data --model_dir=/path/to/results
If you find this repo useful for your research, please consider citing the paper
@inproceedings{
wang2020,
title={Pillar-based Object Detection for Autonomous Driving},
author={Wang, Yue and Fathi, Alireza and Kundu, Abhijit and Ross, David A. and Pantofaru, Caroline and Funkhouser, Thomas A. and Solomon, Justin M.},
booktitle={The European Conference on Computer Vision ({ECCV})},
year={2020}
}