Awesome
ELMRec (EMNLP'24)
Paper - [ArXiv] [ACL Anthology]
- Enhancing High-order Interaction Awareness in LLM-based Recommender Model, EMNLP 2024 Main.
- Xinfeng Wang, Jin Cui, Fumiyo Fukumoto, and Yoshimi Suzuki.
Train and test ELMRec
(1) Install requirements
>> pip install -r requirements.txt
(2) Pretraining ({dataset}: beauty, sports, and toys.) (under ./ELMRec )
>> python pretrain.py ./data/{dataset}/ --cuda --batch_size 64 --checkpoint ./checkpoint/{dataset}/
(3) Inference ({dataset}: beauty, sports, and toys.) (under ./ELMRec )
>> python seq_reranker.py ./data/{dataset}/ --cuda --batch_size 16 --checkpoint ./checkpoint/{dataset}/
>> python topn.py ./data/{dataset}/ --cuda --batch_size 16 --checkpoint ./checkpoint/{dataset}/
>> python exp.py ./data/{dataset}/ --cuda --batch_size 16 --checkpoint ./checkpoint/{dataset}/
Note
- The checkpoints of ELMRec were uploaded on Google Drive.
- If you have any questions, please feel free to contact me at kaysenn@163.com.
- Thanks to linglingl635's careful check, I could recheck and correct Table 9. If you have any questions about this, please check the latest version on arXiv.
Parameters (Table 9)
<table> <tr> <th>Dataset</th> <th colspan="4">Direct Recommendation</th> <th colspan="4">Sequential Recommendation</th> </tr> <tr> <td></td> <td>α</td> <td>σ</td> <td>N</td> <td>L</td> <td>α</td> <td>σ</td> <td>N</td> <td>L</td> </tr> <tr> <td>Sports</td> <td>5</td> <td>5</td> <td>10</td> <td>4</td> <td>1</td> <td>5</td> <td>10</td> <td>4</td> </tr> <tr> <td>Beauty</td> <td>9</td> <td>6</td> <td>15</td> <td>4</td> <td>6</td> <td>6</td> <td>15</td> <td>4</td> </tr> <tr> <td>Toys</td> <td>11</td> <td>5</td> <td>10</td> <td>4</td> <td>9</td> <td>5</td> <td>10</td> <td>4</td> </tr> </table>Code Reference
Citation
If this repository helps you, please cite:
@inproceedings{wang2024enhancing,
title={Enhancing High-order Interaction Awareness in LLM-based Recommender Model},
author={Wang, Xinfeng and Cui, Jin and Fukumoto, Fumiyo and Suzuki, Yoshimi},
booktitle={Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing},
pages={11696--11711},
year={2024}
}