Home

Awesome

<p align=center> [ECCV 2024] MonoWAD: Weather-Adaptive Diffusion Model for Robust Monocular 3D Object Detection</p>

Official Repository for "MonoWAD: Weather-Adaptive Diffusion Model for Robust Monocular 3D Object Detection".

<div align="center">

paper

<img alt="img-name" src="https://github.com/VisualAIKHU/MonoWAD/assets/132932095/16871ca9-b57c-454f-895c-8d44bd835de1" width="900"> </div>

Installation

Create MonoWAD environment:

git clone https://github.com/VisualAIKHU/MonoWAD.git
cd MonoWAD

conda create -n monowad python=3.10
conda activate monowad

Install pytorch and requirements & build:

# We adopt torch 2.0.1
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2

pip install -r requirements.txt

./make.sh

Data Preparation

Please download the official KITTI dataset. You can also download our Foggy KITTI dataset with different fog densities.

Foggy KITTI dataset:

Directory structure:

#MonoWAD_ROOT
  |data/
    |KITTI/
      |object/			
        |training/
          |calib/
          |foggy_2/ #adverse weather images
          |origin_2/ #clear images
          |label_2/
          |velodyne/
        |testing/
          |calib/
          |image_2/ 

Data preprocessing:

./launchers/det_precompute.sh config/config.py train
python scripts/depth_gt_compute.py --config=config/config.py

Training

You can modify the settings of models and training in configs/config.py

# You can modify the GPU_DEVICE (0 is default).
./train.sh 0 MonoWAD_train_val

Evaluation

We provide pre-trained models and place it in './workdirs/MonoWAD/checkpoint/'

# .sh GPU_DEVICE | WEIGHT_NAME | TEST_WEATHER (0 | MonoWAD_3D_latest | clear is default).
./test.sh 0 latest clear

Citation

If you use MonoWAD, please consider citing:

@article{oh2024monowad,
  title={MonoWAD: Weather-Adaptive Diffusion Model for Robust Monocular 3D Object Detection},
  author={Oh, Youngmin and Kim, Hyung-Il and Kim, Seong Tae and Kim, Jung Uk},
  journal={arXiv preprint arXiv:2407.16448},
  year={2024}
}

Acknowlegment

Our codes benefits from the excellent visualDet3D, MonoDTR, denoising-diffusion-pytorch .