Home

Awesome

Deep Learning in Motion Deblurring: Current Status, Benchmarks and Future Prospects Awesome PRs WelcomeStars

:fire::fire: In this review, we have systematically examined over 150 papers :page_with_curl::page_with_curl::page_with_curl:, summarizing and analyzing :star2:more than 30 blind motion deblurring methods.

:fire::fire::fire: Extensive qualitative and quantitative comparisons have been conducted against the current SOTA methods on four datasets, highlighting their limitations and pointing out future research directions.

:fire::fire::fire::fire: The latest deblurring papers of CVPR 2024 have been included~

avatar Fig 1. Overview of deep learning methods for blind motion deblurring.

Content:

  1. <a href="#survey"> Related Reviews and Surveys to Deblurring </a>
  2. <a href="#cnnmodels"> CNN-based Blind Motion Deblurring Models </a>
  3. <a href="#rnnmodels"> RNN-based Blind Motion Deblurring Models </a>
  4. <a href="#ganmodels"> GAN-based Blind Motion Deblurring Models </a>
  5. <a href="#tmodels"> Transformer-based Blind Motion Deblurring Models </a>
  6. <a href="#diffmodels"> Diffusion-based Blind Motion Deblurring Models </a>
  7. <a href="#datasets"> Motion Deblurring Datasets </a>
  8. <a href="#evaluation"> Evaluation </a>
  9. <a href="#citation"> Citation </a>

0. Related Reviews and Surveys to Deblurring: <a id="survey" class="anchor" href="#survey" aria-hidden="true"><span class="octicon octicon-link"></span></a>

:rocket::rocket::rocket:Update (in 2023-12-28) :balloon:

No.YearPub.TitleLinks
012021CDSA Survey on Single Image DeblurringPaper/Project
022021CVIUSingle-image deblurring with neural networks: A comparative surveyPaper/Project
032022IJCVDeep Image Deblurring: A SurveyPaper/Project
042022arXivBlind Image Deblurring: A ReviewPaper/Project
052023CVMJA survey on facial image deblurringPaper/Project
062023arXivA Comprehensive Survey on Deep Neural Image DeblurringPaper/Project

1. CNN-based Blind Motion Deblurring Models: <a id="cnnmodels" class="anchor" href="#CNNmodels" aria-hidden="true"><span class="octicon octicon-link"></span></a>

:rocket::rocket::rocket:Update (in 2024-05-14) :balloon:

No.YearModelPub.TitleLinks
012017DeepDeblurCVPRDeep multi-scale convolutional neural network for dynamic scene deblurringPaper/Project
022019DMPHNCVPRDeep stacked hierarchical multi-patch network for image deblurringPaper/Project
032019PSS-NSCCVPRDynamic scene deblurring with parameter selective sharing and nested skip connectionsPaper/Project
042020DGNTIPDynamic scene deblurring by depth guided modelPaper/Project
052020MSCANTCSVTDeep convolutional-neural-network-based channel attention for single image dynamic scene blind deblurringPaper/Project
062021SDWNetICCVWSdwnet: A straight dilated network with wavelet transformation for image deblurringPaper/Project
072021TIPDeep Outlier Handling for Image DeblurringPaper/[Project]
082021MIMOU-Net+ICCVRethinking coarse-to-fine approach in single image deblurringPaper/Project
092021MPRNetCVPRMulti-stage progressive image restorationPaper/Project
102022MSSNetECCVWMssnet: Multi-scale-stage network for single image deblurringPaper/Project
112022HINetCVPRWHinet: Half instance normalization network for image restorationPaper/Project
122022BANetTIPBanet: a blur-aware attention network for dynamic scene deblurringPaper/Project
132022IRNeXtICMLIrnext: Rethinking convolutional network design for image restorationPaper/Project
142023ReLoBlurAAAIReal-World Deep Local Motion DeblurringPaper/Project
152023MRLPFNetICCVMulti-scale Residual Low-Pass Filter Network for Image DeblurringPaper/[Project]
162023MSFS-FNetTCSVTMulti-Scale Frequency Separation Network for Image DeblurringPaper/Project

2. RNN-based Blind Motion Deblurring Models: <a id="rnnmodels" class="anchor" href="#RNNmodels" aria-hidden="true"><span class="octicon octicon-link"></span></a>

:rocket::rocket::rocket:Update (in 2024-05-14) :balloon:

No.YearModelPub.TitleLinks
012018SVRNNCVPRDynamic scene deblurring using spatially variant recurrent neural networksPaper/Project
022018SRNCVPRScale-recurrent network for deep image deblurringPaper/Project
032022TCSVTDeep Dynamic Scene Deblurring From Optical FlowPaper/[Project]
042023MT-RNNECCVMulti-temporal recurrent neural networks for progressive non-uniform single image deblurring with incremental temporal trainingPaper/Project

3. GAN-based Blind Motion Deblurring Models: <a id="ganmodels" class="anchor" href="#GANmodels" aria-hidden="true"><span class="octicon octicon-link"></span></a>

:rocket::rocket::rocket:Update (in 2024-05-14) :balloon:

No.YearModelPub.TitleLinks
012018DeblurGANCVPRDeblurgan: Blind motion deblurring using conditional adversarial networksPaper/Project
022019DeblurGAN-V2ICCVDeblurgan-v2: Deblurring (orders-of-magnitude) faster and betterPaper/Project
032020DBGANCVPRDistribution-induced Bidirectional GAN for Graph Representation LearningPaper/Project
042021CycleGANICCVUnpaired image-to-image translation using cycle-consistent adversarial networksPaper/Project
052021TPAMIPhysics-Based Generative Adversarial Models for Image Restoration and BeyondPaper/[Project]
062022FCLGANACMUnpaired image-to-image translation using cycle-consistent adversarial networksPaper/Project
072022Ghost-DeblurGANIROSApplication of Ghost-DeblurGAN to Fiducial Marker DetectionPaper/Project

4. Transformer-based Blind Motion Deblurring Models: <a id="tmodels" class="anchor" href="#Tmodels" aria-hidden="true"><span class="octicon octicon-link"></span></a>

:rocket::rocket::rocket:Update (in 2024-05-14) :balloon:

No.YearModelPub.TitleLinks
012021UformerCVPRUformer: A general u-shaped transformer for image restorationPaper/Project
022022RestormerCVPRRestormer: Efficient transformer for high-resolution image restorationPaper/Project
032022StripformerECCVStripformer: Strip transformer for fast image deblurringPaper/Project
042022StoformerNeurIPSStochastic Window Transformer for Image RestorationPaper/Project
052023SharpformerTIPSharpFormer: Learning Local Feature Preserving Global Representations for Image DeblurringPaper/Project
062023FFTformerCVPREfficient Frequency Domain-based Transformers for High-Quality Image DeblurringPaper/Project
072023BiTCVPRBlur Interpolation Transformer for Real-World Motion from BlurPaper/Project
082024CVPREfficient Multi-scale Network with Learnable Discrete Wavelet Transform for Blind Motion Debluring[Paper]/[Project]
092024TNNLSImage Deblurring by Exploring In-Depth Properties of Transformer[Paper]/Project

5. Diffusion-based Blind Motion Deblurring Models: <a id="diffmodels" class="anchor" href="#Diffmodels" aria-hidden="true"><span class="octicon octicon-link"></span></a>

:rocket::rocket::rocket:Update (in 2024-05-14) :balloon:

No.YearModelPub.TitleLinks
012023ICCVMultiscale Structure Guided Diffusion for Image DeblurringPaper/[Project]
022024ID-BlauCVPRID-Blau: Image Deblurring by Implicit Diffusion-based reBLurring AUgmentationPaper/[Project]
032024CVPRFourier Priors-Guided Diffusion for Zero-Shot Joint Low-Light Enhancement and Deblurring[Paper]/[Project]

6. Motion Deblurring Datasets: <a id="datasets" class="anchor" href="#datasets" aria-hidden="true"><span class="octicon octicon-link"></span></a>

:rocket::rocket::rocket:Update (in 2024-01-08) :balloon:

No.DatasetYearPub.SizeTypesTrain/Val/TestDownload
01Köhler at al.2012ECCV4 sharp, 48 blurSynthetic-link
02GoPro2017CVPR3214Synthetic2103/0/1111link
03HIDE2019CVPR8422Synthetic6397/0/2025link
04Blur-DVS2020CVPR13358Real8878/1120/3360[link]
05RealBlur2020ECCV4738Real3758/0/980link
06RsBlur2022ECCV13358Real8878/1120/3360link
07ReLoBlur2023AAAI2405Real2010/0/395link

7. Evaluation: <a id="evaluation" class="anchor" href="#evaluation" aria-hidden="true"><span class="octicon octicon-link"></span></a>

evaluation_GoPro.m
evaluation_HIDE.m
python evaluate_RealBlur_J.py
python evaluate_RealBlur_R.py

Citation: <a id="citation" class="anchor" href="#citation" aria-hidden="true"><span class="octicon octicon-link"></span></a>

If you find our survey paper and evaluation code are useful, please cite the following paper:

@article{xiang2024deep,
  title={Deep learning in motion deblurring: current status, benchmarks and future prospects},
  author={Xiang, Yawen and Zhou, Heng and Li, Chengyang and Sun, Fangwei and Li, Zhongbo and Xie, Yongqiang},
  journal={The Visual Computer},
  pages={1--27},
  year={2024},
  publisher={Springer}
}

:clap::clap::clap: Thanks to the above authors for their excellent work!