Awesome
MemSAC (ECCV 2022)
We present MemSAC (Memory Augmented Sample Consistency for Large-Scale Domain Adaptation) for unsupervised domain adaptation across datasets with many categories or fine-grained classes.
The following dependencies are required.
- Ubuntu 18.04
- Python==3.7.4
- numpy==1.19.2
- PyTorch==1.4.0, torchvision==0.6.0, cudatoolkit==10.1
Data
The datasets can be downloaded using the following links.
- DomainNet: http://ai.bu.edu/M3SDA/.
- CUB-Paintings: https://drive.google.com/file/d/1G327KsD93eyGTjMmByuVy9sk4tlEOyK3/view?usp=sharing (from https://github.com/thuml/PAN).
Download the datasets into folder called data/
.
Training model on DomainNet
To train the model on DomainNet, run the following script.
bash jobs/domainNet_345.sh <source> <target> <Path for DomainNet dataset> <queue_size>
For example,
bash jobs/domainNet_345.sh real clipart ./data/DomainNet/ 48000
To train the model on CUB-Drawings, run the following script.
bash jobs/cub200.sh <source> <target> <Path for cub2011 dataset> <queue_size>
Testing using trained model.
To directly test our trained model, download the models available at the following links.
Method | Trained Model |
---|---|
DomainNet | Link |
CUB-200 | Link |
CUB-200 dataset
python eval.py --nClasses 200 --checkpoint drawing_cub.pth.tar --data_dir <Path for cub2011 dataset> --batch_size 64 --dataset cub2011 --target cub
DomainNet
python eval.py --nClasses 345 --checkpoint real_clipart.pth.tar --data_dir <Path for domainNet dataset> --dataset domainNet --target clipart
If you find MemSAC useful for your work please cite:
@article{kalluri2022memsac
author = {Kalluri, Tarun and Sharma, Astuti and Chandraker, Manmohan},
title = {MemSAC: Memory Augmented Sample Consistency for Large Scale Domain Adaptation},
journal = {ECCV},
year = {2022},
}