Awesome
<div align="center"> <h1>VEnhancer: Generative Space-Time Enhancement<br>for Video Generation</h1> <div> <a href='https://scholar.google.com/citations?user=GUxrycUAAAAJ&hl=zh-CN' target='_blank'>Jingwen He</a>,  <a href='https://tianfan.info' target='_blank'>Tianfan Xue</a>,  <a href='https://github.com/ChrisLiu6' target='_blank'>Dongyang Liu</a>,  <a href='https://github.com/0x3f3f3f3fun' target='_blank'>Xinqi Lin</a>,  </div> <a href='https://gaopengcuhk.github.io' target='_blank'>Peng Gao</a>,  <a href='https://scholar.google.com/citations?user=GMzzRRUAAAAJ&hl=en' target='_blank'>Dahua Lin</a>,  <a href='https://scholar.google.com/citations?user=gFtI-8QAAAAJ&hl=en' target='_blank'>Yu Qiao</a>,  <a href='https://wlouyang.github.io' target='_blank'>Wanli Ouyang</a>,  <a href='https://liuziwei7.github.io' target='_blank'>Ziwei Liu</a> <div> </div> <div> The Chinese University of Hong Kong, Shanghai Artificial Intelligence Laboratory,  </div> <div> </div> <div> S-Lab, Nanyang Technological University  </div> <div> <h4 align="center"> <a href="https://vchitect.github.io/VEnhancer-project/" target='_blank'> <img src="https://img.shields.io/badge/🐳-Project%20Page-blue"> </a> <a href="https://arxiv.org/abs/2407.07667" target='_blank'> <img src="https://img.shields.io/badge/arXiv-2312.06640-b31b1b.svg"> </a> <a href="https://youtu.be/QMR_5weifGg" target='_blank'> <img src="https://img.shields.io/badge/Demo%20Video-%23FF0000.svg?logo=YouTube&logoColor=white"> <!-- </a> <img src="https://api.infinitescript.com/badgen/count?name="> --> </h4> </div><strong>VEnhancer, an All-in-One generative video enhancement model that can achieve spatial super-resolution, temporal super-resolution, and video refinement for AI-generated videos.</strong>
<table class="center"> <tr> <td colspan="1">AIGC video</td> <td colspan="1">+VEnhancer</td> </tr> <tr> <td> <img src=assets/input_fish.gif width="380"> </td> <td> <img src=assets/out_fish.gif width="380"> </td> </tr> </table>:open_book: For more visual results, go checkout our <a href="https://vchitect.github.io/VEnhancer-project/" target="_blank">project page</a>
</div>
🔥 Update
- [2024.09.12] 😸 Release our version 2 checkpoint: venhancer_v2.pt . It is less creative, but is able to generate more texture details, and has better identity preservation, which is more suitable for enhancing videos with profiles.
- [2024.09.10] 😸 Support Multiple GPU Inference and tiled VAE for temporal VAE decoding. And more stable performance for long video enhancement.
- [2024.08.18] 😸 Support enhancement for abitrary long videos (by spliting the videos into muliple chunks with overlaps); Faster sampling with only 15 steps without obvious quality loss (by setting
--solver_mode 'fast'
in the script command); Use temporal VAE to reduce video flickering. - [2024.07.28] 🔥 Inference code and pretrained video enhancement model are released.
- [2024.07.10] 🤗 This repo is created.
:astonished: Gallery
Inputs & Results | Model Version |
---|---|
Prompt: A close-up shot of a woman standing in a dimly lit room. she is wearing a traditional chinese outfit, which includes a red and gold dress with intricate designs and a matching headpiece.<br/><video src="https://github.com/user-attachments/assets/4a514853-65f6-40b8-8b5d-d14835bb9297" width="100%" controls autoplay></video>from Open-Sora | <div style="width:100px">v2</div> |
Prompt: Einstein plays guitar.<br/><table class="center"><tr><td><video src="https://github.com/user-attachments/assets/aa76e8a2-14e2-49a1-915c-147838476ab1" width="50%" controls autoplay></video></td><td><video src="https://github.com/user-attachments/assets/f08e6f77-19d4-4847-9356-739a84da38b2" width="50%" controls autoplay></video></td></tr></table>from Kling | <div style="width:100px">v2</div> |
Prompt: A girl eating noodles.<br/><table class="center"><tr><td><video src="https://github.com/user-attachments/assets/cc01bf80-8b49-4314-97a3-1e1ec2d16d6a" width="50%" controls autoplay></video></td><td><video src="https://github.com/user-attachments/assets/ce923609-614b-4f87-ba2b-7b831edce40f" width="50%" controls autoplay></video></td></tr></table>from Kling | <div style="width:100px">v2</div> |
Prompt: A little brick man visiting an art gallery.<br/><video src="https://github.com/user-attachments/assets/39a39459-4a69-4ef7-80ef-74df066decb5" width="100%" controls autoplay></video><br/><video src="https://github.com/user-attachments/assets/d110bec4-9ea1-4348-a6db-e9dd6cce4bc2" width="100%" controls autoplay></video>from Kling | <div style="width:100px">v1</div> |
🎬 Overview
VEnhancer achieves spatial super-resolution, temporal super-resolution (i.e, frame interpolation), and video refinement in one model. It is flexible to adapt to different upsampling factors (e.g., 1x~8x) for either spatial or temporal super-resolution. Besides, it provides flexible control to modify the refinement strength for handling diversified video artifacts.
It follows ControlNet and copies the architecures and weights of multi-frame encoder and middle block of a pretrained video diffusion model to build a trainable condition network. This video ControlNet accepts both low-resolution key frames and full frames of noisy latents as inputs. Also, the noise level $\sigma$ regarding noise augmentation and downscaling factor $s$ serve as additional network conditioning through our proposed video-aware conditioning apart from timestep $t$ and prompt $c_{text}$.
<!-- ![overall_structure](assets/venhancer_arch.png) -->:gear: Installation
# clone this repo
git clone https://github.com/Vchitect/VEnhancer.git
cd VEnhancer
# create environment
conda create -n venhancer python=3.10
conda activate venhancer
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2
pip install -r requirements.txt
Note that ffmpeg command should be enabled. If you have sudo access, then you can install it using the following command:
sudo apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
:dna: Pretrained Models
Model Name | Description | HuggingFace | BaiduNetdisk |
---|---|---|---|
venhancer_paper.pth | very creative, strong refinement, but sometimes over-smooths edges and texture details. | download | download |
venhancer_v2.pth | less creative, but can generate better texture details, and has better identity preservation. | download | download |
💫 Inference
- Download the VEnhancer model and then put the checkpoint in the
VEnhancer/ckpts
directory. (optional as it can be done automatically) - run the following command.
bash run_VEnhancer.sh
for single GPU inference (at least A100 80G is required), or
bash run_VEnhancer_MultiGPU.sh
for multiple GPU inference.
In run_VEnhancer.sh
or run_VEnhancer_MultiGPU.sh
,
version
. We now provide two choices:v1
andv2
(venhancer_paper.pth and venhancer_v2.pth, respectively).up_scale
is the upsampling factor ($1\sim8$) for spatial super-resolution. $\times3,4$ are recommended. Note that the target resolution will be adjusted no higher than 2k resolution.target_fps
is your expected target fps, and the default is 24.noise_aug
is the noise level ($0\sim300$) regarding noise augmentation. Higher noise corresponds to stronger refinement. $200\sim300$ are recommended.- Regarding prompt, you can use
--filename_as_prompt
to automatically use filename as prompt; or you can write the prompt to a txt file, and specify the prompt_path by setting--prompt_path [your_prompt_path]
; or directly provide the prompt by specifying--prompt [your_prompt]
. - Regarding sampling,
--solver_mode fast
has fixed 15 sampling steps. For--solver_mode normal
, you can modifysteps
to trade off efficiency over video quality.
Gradio
The same functionality is also available as a gradio demo. Please follow the previous guidelines, and specify the model version (v1 or v2).
python gradio_app.py --version v1
BibTeX
If you use our work in your research, please cite our publication:
@article{he2024venhancer,
title={VEnhancer: Generative Space-Time Enhancement for Video Generation},
author={He, Jingwen and Xue, Tianfan and Liu, Dongyang and Lin, Xinqi and Gao, Peng and Lin, Dahua and Qiao, Yu and Ouyang, Wanli and Liu, Ziwei},
journal={arXiv preprint arXiv:2407.07667},
year={2024}
}
🤗 Acknowledgements
Our codebase builds on modelscope. Thanks the authors for sharing their awesome codebases!
📧 Contact
If you have any questions, please feel free to reach us at hejingwenhejingwen@outlook.com
.